Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 4
Number of page(s) 19
Section Population dynamics and epidemiology
Published online 27 February 2023
  1. R. Arditi, C. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor. Pop. Biol. 106 (2015) 45–59. [CrossRef] [Google Scholar]
  2. R. Arditi, C. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation. Theor. Pop. Biol. 120 (2018) 11–15. [CrossRef] [Google Scholar]
  3. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and N.T. Huu, Aggregation of variables and applications to population dynamics, in P. Magal and S. Ruan (Eds.), Structured Population Models in Biology and Epidemiology. Vol. 1936 of Lecture Notes in Mathematics. Math. Biosci. Subseries. Springer (2008) pp. 209–263. [Google Scholar]
  4. P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and L. Sanz, Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev. 5 (2008) 79–105. [CrossRef] [Google Scholar]
  5. P. Auger, B. Kooi and A. Moussaoui, Increase of maximum sustainable yield for fishery in two patches with fast migration. Ecol. Model. 467 (2022) 109898. [CrossRef] [Google Scholar]
  6. C. Bernstein, P. Auger and J.-C. Poggiale, Predator migration decisions, the ideal free distribution, and predator-prey dynamics. Am. Nat. 153 (1999) 267–281. [CrossRef] [PubMed] [Google Scholar]
  7. S.A. Bortone, Resolving the attraction-production dilemma in artificial reef research: some Yeas and Nays. Fisheries 23 (1998) 6–10. [CrossRef] [Google Scholar]
  8. T. Brochier, P. Brehmer, A. Mbaye, M. Diop, N. Watanuki, H. Terashima, D. Kaplan and P. Auger, Successful artificial reefs depend on getting the context right due to complex socio-bio-economic interactions. Sci. Rep.-UK 11 (2021) 16698. [CrossRef] [Google Scholar]
  9. C.W. Clark, Mathematical Bioeconomics. The Optimal Management of Renewable Resources. John Wiley & Sons (1990). [Google Scholar]
  10. L. Dagorn, K.N. Holland and D.G. Itano, Behavior of yellowfin (Thunnus albacares ) and bigeye (T. obesus) tuna in a network offish aggregating devices (FADs). Mar. Biol. (Berl.) 151 (2007) 595–606. [CrossRef] [Google Scholar]
  11. D.L. DeAngelis, W.-M. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems. Theor. Ecol. 9 (2016) 443–453. [CrossRef] [Google Scholar]
  12. D.L. DeAngelis and B. Zhang, Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn.-B 19 (2014) 3087–3104. [Google Scholar]
  13. A. Fonteneau, J. Ariz, D. Gaertner, T. Nordstrom and P. Pallares, Observed changes in the species composition of tuna schools in the Gulf of Guinea between 1981 and 1999, in relation with the fish aggregrating device fishery. Aquat. Living Resour. 13 (2000) 253–257. [CrossRef] [Google Scholar]
  14. H.I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J. Appl. Math. 32 1977 631–648. [CrossRef] [MathSciNet] [Google Scholar]
  15. S.D. Fretwell and H.L. Lucas, On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor. 19 (1970) 16–36. [Google Scholar]
  16. R. Hilborn, F. Michel and G.A. De Leo, Integrating marine protected areas with catch regulation. Can. J. Fish. Aquat. Sci. 63 (2006) 642–649. [CrossRef] [Google Scholar]
  17. R.T. Holt, Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat. Theor. Pop. Biol. 28 (1985) 181–208. [CrossRef] [Google Scholar]
  18. M. Iannelli and A. Pugliese, An Introduction to Mathematical Population Dynamics. Along the trail of Volterra and Lotka. Springer (2014). [Google Scholar]
  19. C. Jerry and N. Raïssi, Optimal exploitation for a commercial fishing model. Acta Biotheor. 60 (2012) 209–223. [CrossRef] [PubMed] [Google Scholar]
  20. T. Moulin, A. Perasso and E. Venturino, A metaecoepidemic model of grassland ecosystem with only consumers’ migration. B. Math. Biol. 82 (2020) 88. [CrossRef] [PubMed] [Google Scholar]
  21. J.-C. Poggiale, P. Auger, D. Nerini, C. Mantá and F. Gilbert, Global production increased by spatial heterogeneity in a population dynamics model, Acta Biotheor. 53 (2005) 359–370. [CrossRef] [PubMed] [Google Scholar]
  22. J.J. Polovina and I. Sakai, Impacts of artificial reefs on fishery production in Shimamaki, Japan. Bull. Mar. Sci. 44 (1989) 997–1003. [Google Scholar]
  23. M.B. Schaefer, Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. J. Fish. Res. Board Canada 14 (1957) 669–681. [CrossRef] [Google Scholar]
  24. H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence. American Mathematical Society (2011). [Google Scholar]
  25. B. Zhang, D.L. DeAngelis and W.-M. Ni, Carrying capacity of spatially distributed metapopulations. Trends Ecol. Evol. 36 (2021) 164–173. [CrossRef] [Google Scholar]
  26. B. Zhang, A. Kula, K.M.L. Mack, L. Zhai, A.L. Ryce, W.-M. Ni, D.L. DeAngelis and J.D. Van Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol. Lett. 20 (2017) 1118–1128. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.