Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 5
Number of page(s) 27
Section Population dynamics and epidemiology
Published online 03 March 2023
  1. Z. Abbasi, I. Zamani, A. Mehra, M. Shafìeirad and A. Ibeas, Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19. Chaos Solit. Fract. 139 (2020) 110054. [CrossRef] [Google Scholar]
  2. J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough and J.H. Wu, A model for influenza with vaccination and antiviral treatment. J. Theor. Biol. 253 (2008) 118–130. [CrossRef] [Google Scholar]
  3. S.K. Brooks, R.K. Webster, L.E. Smith, L. Woodland, S. Wessely, N. Greenberg and G. Rubin, The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet 395 (2020) 912–920. [CrossRef] [Google Scholar]
  4. F. Castanos and L. Fridman, Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 51 (2006) 853–858. [CrossRef] [Google Scholar]
  5. P. Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Edwards and S.K. Spurgeon, Sliding mode control: theory and applications (1998). [Google Scholar]
  7. M. El Fatini, I. Sekkak and A. Laaribi, A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination. Physica A 520 (2019) 151–160. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Friedman, Stochastic Differential Equations and Applications. Stochastic Differential Equations and Applications (1976). [Google Scholar]
  9. Z.T. Huang, Q.G. Yang and J.F. Cao, Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise. Appl. Math. Model. 35 (2011) 5842–5855. [CrossRef] [MathSciNet] [Google Scholar]
  10. Z.T. Huang, Q.G. Yang and J.F. Cao, The stochastic stability and bifurcation behavior of an internet congestion control model. Math. Comput. Model. 54 (2011) 1954–1965. [CrossRef] [Google Scholar]
  11. P. Gahinet and P. Apkarian, A linear matrix inequality approach to Hi control. Int. J. Robust Nonlinear Control 4 (1994) 421–448. [CrossRef] [Google Scholar]
  12. Q. Gao, G. Feng, L. Liu, J.B. Qiu and Y. Wang, An ISMC approach to robust stabilization of uncertain stochastic time-delay systems. IEEE Trans. Ind. Electr. 61 (2014) 6986–6994. [CrossRef] [Google Scholar]
  13. Q. Gao, G. Feng, L. Liu, J.B. Qiu and Y. Wang, Robust Hœ control for stochastic T-S fuzzy systems via integral sliding-mode approach. IEEE Trans. Fuzzy Syst. 22 (2013) 870–881. [Google Scholar]
  14. T.M. Guerra, A. Sala and K. Tanaka, Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281 (2015) 168–182. [CrossRef] [Google Scholar]
  15. R. Khasminskii, Stochastic stability of differential equations. Springer Science & Business Media (2011). [Google Scholar]
  16. R.Z. Khasminskii, On the principle of averaging the Ito’s stochastic differential equations. Kybernetika 4 (1968) 260–279. [MathSciNet] [Google Scholar]
  17. N. Leung, D.K. Chu, E.Y. Shiu, K. Chan, J.J. McDevitt, B.J. Hau, H. Yen, Y.G. Li, D.K. Ip, J. Peiris, W. Seto, G.M. Leung, D.K. Milton and B.J. Cowling, Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26 (2020) 676–680. [CrossRef] [PubMed] [Google Scholar]
  18. Lin and Y.K. Cai, Probabilistic structural dynamics, Probabilistic structural dynamics (2004). [Google Scholar]
  19. Q. Liu, D.Q. Jiang, T. Hayat and A. Alsaedi, Dynamics of a stochastic predator-prey model with stage structure for predator and Holling Type II functional response. J. Nonlinear Sci. 28 (2018) 1151–1187. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Liu and C.Z. Bai, Optimal harvesting policy of a stochastic food chain population model. Appl. Math. Comput. 245 (2014) 265–270. [MathSciNet] [Google Scholar]
  21. J.H. Li, Q.L. Zhang, X.G. Yan and S.K. Spurgeon, Robust stabilization of T-S fuzzy stochastic descriptor systems via integral sliding modes. IEEE Trans. Cybern. 48 (2017) 2736–2749. [Google Scholar]
  22. Q. Liu and Q.M. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015) 140–153. [CrossRef] [MathSciNet] [Google Scholar]
  23. Q. Liu, D.Q. Jiang, T. Hayat and A. Alsaedi, Dynamics of a stochastic predator-prey model with distributed delay and Markovian switching. Physica A 527 (2019) 118–130. [Google Scholar]
  24. Q. Liu, D.Q. Jiang, N.Z. Shi, T. Hayat and A. Alsaedi, Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size. Physica A 469 (2017) 518–530. [CrossRef] [MathSciNet] [Google Scholar]
  25. X.R. Mao, Stochastic differential equations and their applications (1997). [Google Scholar]
  26. X.R. Mao and C.G. Yuan, Stochastic differential equations with Markovian switching. Stoch. Differ. Equ. Markovian Switch. (2006). [Google Scholar]
  27. G.P. Matthews and R.A. DeCarlo, Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica 24 (1988) 187–193. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Mehra, I. Zamani, Z. Abbasi, A. Ibeas, Observer-based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population. J. Theor. Biol. 482 (2019) 118–130. [Google Scholar]
  29. N.S. Namachchivaya, Stochastic bifurcation. Appl. Math. Comput. 39 (1990) 37–95. [MathSciNet] [Google Scholar]
  30. L. Qiao, Q.L. Zhang and G.F. Zhang, Admissibility analysis and control synthesis for T-S fuzzy descriptor systems. IEEE Trans. Fuzzy Syst. 25 (2017) 729–740. [CrossRef] [Google Scholar]
  31. J. Slotine and W.P. Li, Applied nonlinear control (1991). [Google Scholar]
  32. K. Tanaka, H. Ohtake and H.O. Wang, A descriptor system approach to fuzzy control system design via fuzzy lyapunov functions. IEEE Trans. Fuzzy Syst. 15 (2007) 333–341. [CrossRef] [Google Scholar]
  33. V. Utkin and J. Shi, Integral sliding mode in systems operating under uncertainty conditions. Proceedings of 35th IEEE Conference on Decision and Control 4 (1996) 4591–4596. [CrossRef] [Google Scholar]
  34. V. Utkin, J. Guldner and J. Shi, Sliding mode control in electromechanical systems (1999). [Google Scholar]
  35. D.M. Xiao and S.G. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208 (2007) 419–429. [CrossRef] [MathSciNet] [Google Scholar]
  36. D.Y. Xu, Z.G. Yang and Y.M. Huang, Existence - uniqueness and continuation theorems for stochastic functional differential equations. J. Differ. Equ. 245 (2008) 1681–1703. [CrossRef] [Google Scholar]
  37. X.H. Zhang, D.Q. Jiang, T. Hayat and B. Ahmad, Dynamics of a stochastic SIS model with double epidemic diseases driven by Levy jumps. Physica A 471 (2017) 767–777. [CrossRef] [MathSciNet] [Google Scholar]
  38. J.H. Zhang, Y.J. Lin and G. Feng, Analysis and synthesis of memory-based fuzzy sliding mode controllers. IEEE Trans. Cybern. 45 (2015) 2880–2889. [CrossRef] [PubMed] [Google Scholar]
  39. W.Q. Zhu, Nonlinear Dynamics and Control Hamilton Theoretical System Frame. Science Press, Beijing (2003). [Google Scholar]
  40. B.Y. Zhu, Analysis and Control for a Kind of T-S Fuzzy Descriptor Systems, Master’s thesis, Northeastern University (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.