Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 6
Number of page(s) 26
Section Population dynamics and epidemiology
Published online 10 March 2023
  1. O. Arino, E. Sonchez and G.F. Webb Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J. Math. Anal. Appl. 215 (1997) 499–513. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B.V. Brunt, G. Wake and D. Wall, A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol. 47 (2003) 295–312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. F. Billy, J. Clairambaultt, O. Fercoq, S. Gaubertt, T. Lepoutre, T. Ouillon and S. Saito Synchronisation and control of proliferation in cycling cell population models with age structure. Math. Comput. Simul. 96 (2014) 66–94. [CrossRef] [Google Scholar]
  4. F.B. Brikci, J. Clairambault, B. Ribba and B. Perthame An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57 (2008) 91–110. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. Y. Chen, J. Yang and F. Zhang The global stability of an SIRS model with infection age. Math. Biosci. Eng. 11 (2014) 449–469. [CrossRef] [MathSciNet] [Google Scholar]
  6. K.J. Denise and P. Carl Modeling immunotherapy of the tumor C immune interaction. J. Math. Biol. 37 (1998) 235–252. [CrossRef] [PubMed] [Google Scholar]
  7. L. DePillis, A. Eladdadi and A. Radunskaya Modeling cancer-immune responses to therapy. J. Pharmacokinet. Pharmacodyn. 41 (2014) 461–478. [CrossRef] [PubMed] [Google Scholar]
  8. J. Dyson, R. Villella-Bressan and G.F. Webb Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177-178 (2002) 73–83. [CrossRef] [Google Scholar]
  9. M. Gaach Dynamics of the tumor-immune system competition: the effect of time delay. Int. J. Appl. Math. Comput. Sci. 13 (2003) 395–406. [MathSciNet] [Google Scholar]
  10. P. Gabriel, S.P. Garbett, V. Quaranta, D.R. Tyson and G.F. Webb The contribution of age structure to cell population responses to targeted therapeutics. J. Theor. Biol. 311 (2012) 19–27. [CrossRef] [Google Scholar]
  11. A. Golubev Exponentially modified Gaussian (EMG) relevance to distributions related to cell proliferation and differentiation. J. Theor. Biol. 262 (2010) 257–266. [CrossRef] [Google Scholar]
  12. M. Gyllenberg and G.F. Webb Age-size structure in populations with quiescence. Math. Biosci. 86 (1987) 67–95. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.K. Hale and P. Waltman Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20 (1989) 388–395. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Inaba Threshold and stability for an age-structured epidemic model. Physica D 28 (1989) 411–434. [Google Scholar]
  15. R.J. Jang and H.C. Wei On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discr. Continu. Dyn. Syst. B 9 (2021) 1559–1587. [Google Scholar]
  16. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor and A.S. Perelson Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56 (1994) 295–321. [Google Scholar]
  17. Z. Liu, C. Guo, H. Li and L. Zhao Analysis of a nonlinear age-structured tumor cell population model. Nonlinear Dyn. 98 (2019) 283–300. [CrossRef] [Google Scholar]
  18. Z. Liu, C. Guo, J. Yang and H. Li Steady states analysis of a nonlinear age-structured tumor cell population model with quiescence and bidirectional transition. Acta Appl. Mathemat. 163 (2020) 455–474. [CrossRef] [Google Scholar]
  19. Z. Liu, C. Jing, J. Pang, B. Ping and S. Ruan Modeling and analysis of a nonlinear age-structured model for tumor cell populations with quiescence. J. Nonlinear Sci. 28 (2018) 1763–1791. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Magal and X.Q. Zhao Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37 (2005) 251–275. [CrossRef] [MathSciNet] [Google Scholar]
  21. K.J. Mahasa, R. Ouifki, A. Eladdadi and L.D. Pillis Mathematical model of tumor-immune surveillance. J. Theor. Biol. 404 (2016) 312–330. [CrossRef] [Google Scholar]
  22. Norhayati and G.C. Wake The solution and the stability of a nonlinear age-structured population model. Anziam J. 45 (2003) 153–165. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Ostrand-Rosenberg Immune surveillance: a balance between protumor and antitumor immunity. Curr. Opin. Genetics Dev. 18 (2008) 11–18. [CrossRef] [Google Scholar]
  24. J. Pang, J. Chen, Z. Liu, P. Bi and S. Ruan. Local and global stabilities of a viral dynamics model with infection-age and immune response. Journal of Dynamics and Differential Equations. 31 (2019) 793–813. [CrossRef] [MathSciNet] [Google Scholar]
  25. L.G.D. Pillis, A.E. Radunskaya and C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65 (2005) 7950–7958. [CrossRef] [PubMed] [Google Scholar]
  26. S. Ruan Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete Continu. Dyn. Syst. B 26 (2021) 541–602. [CrossRef] [Google Scholar]
  27. M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth. J. Math. Biol. 47 (2003) 270–294. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. D. Xiao, S. Ruan and Y. Yang. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering 12 (2015) 859–877. [CrossRef] [MathSciNet] [Google Scholar]
  29. H. Yang, Y. Tan, J. Yang and Z. Liu Extinction and persistence of a tumor-immune model with white noise and pulsed comprehensive therapy. Math. Comput. Simul. 128 (2021) 456–470. [CrossRef] [Google Scholar]
  30. J. Yang, Y. Tan and R.A. Cheke Modelling effects of a chemotherapeutic dose response on a stochastic tumour-immune model. Chaos Solitons Fractals 123 (2019) 1–13. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.