Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 26
Number of page(s) 16
Section Mathematical physiology and medicine
Published online 25 September 2023
  1. A. Andueza, S. Kumar, J. Kim, D.-W. Kang, H.L. Mumme, J.I. Perez, N. Villa-Roel and H. Jo, Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 33 (2020) 108491. [CrossRef] [PubMed] [Google Scholar]
  2. Y. Bazilevs, V.M. Calo, T.E. Tezduyar and T.J.R. Hughes, Beta discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Meth. Fluids 54 (2007) 593–608. [CrossRef] [Google Scholar]
  3. L. Bennati, C. Vergara, Μ. Domanin, C. Malloggi, D. Bissacco, S. Trimarchi, V. Silani, G. Parati and R. Casana A computational fluid-structure interaction study for carotids with different atherosclerotic plaques. J. Biomech. Eng. 143 (2021). [CrossRef] [Google Scholar]
  4. S. Boujena, O. Kafl and N. El Khatib, Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery. Appl. Anal. 95 (2016) 1645–1670. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for a convection dominated flows with a particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 32 (1982) 199–259. [CrossRef] [Google Scholar]
  6. C.M. Buffinton and D.M. Ebenstein, Effect of calcification modulus and geometry on stress in models of calcified atherosclerotic plaque. Cardiovasc. Eng. Tech. 5 (2014) 244–260. [CrossRef] [Google Scholar]
  7. Z. Chen, H. Qin, J. Liu, B. Wu, Z. Cheng, Y. Jiang, L. Liu, L. Jing, X. Leng, J. Jing and Y. Wang, Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: a pilot study. Front. Neurol. 10 (2020). DOI: 10.3389/fneur.2019.01372. [CrossRef] [Google Scholar]
  8. P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three Dimensional Elasticity. North-Holland (1988). [Google Scholar]
  9. P. Crosetto, P. Raymond, S. Deparis, D. Kontaxakis, N. Stergiopulos and A. Quarteroni, Fluid-structure interaction simulations of physiological blood flow in the aorta. Comput. Fluids 43 (2011) 46–57. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.S. Dhawan, R.P. Avati Nanjundappa, J. R. Branch, W. Robert Taylor, A.A. Quyyumi, H. Jo, M.C. McDaniel, J. Suo, D. Giddens and H. Samady, Shear stress and plaque development. Expert Rev. Cardiovasc. Ther. 8 (2010) 545–556. [CrossRef] [PubMed] [Google Scholar]
  11. P. Deuflhard A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22 (1974) 289–315. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluidstructure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982) 689–723. [CrossRef] [Google Scholar]
  13. N. El Khatib, Modélisation mathématique de l’athérosclérose. PhD thesis, Université Claude Bernard-Lyon 1, 2009. [Google Scholar]
  14. N. El Khatib, O. Kafl, J. Tiago and A. Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Math. Biosci. Eng. 14 (2017) 179–193. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Raggiano, L. Formaggia and L. Antiga, An open-source tool for patient-specific fluid-structure vessel mesh generation. Fifth International Symposium on Modelling of Physiological Flows, Chia Laguna, Italy, 2013. [Google Scholar]
  16. A.Μ. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Math. Biosci. Eng. 8 (2011) 409–423. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Gastounioti, S. Makrodimitris, S. Golemati, N.P.E. Kadoglou, C.D. Liapis and K.S. Nikita A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall. IEEE J. Biomed. Health Inform. 19 (2015) 1137–1145. [Google Scholar]
  18. S. Golemati, E. Patelaki, A. Gastounioti, I. Andreadis, C.D. Liapis and K.S. Nikita, Motion synchronisation patterns of the carotid atheromatous plaque from B-mode ultrasound. Sci. Rep. 10 (2020) 11221. [CrossRef] [Google Scholar]
  19. T. Guerra, A. Sequeira and J. Tiago, Optimal control in blood flow simulations. Int. J. Non-linear Meeh. 64 (2014) 57–69. [CrossRef] [Google Scholar]
  20. G.K. Hansson and J. Nilsson, Developing a vaccine against atherosclerosis. Nat. Rev. Cardiol. 17 (2020), 451–452. [CrossRef] [PubMed] [Google Scholar]
  21. G. Hauke and T.J.R. Hughes A unified approach to compressible and incompressible flows. Comput. Meth. Appl. Mech. Eng. 113 (1994) 389–395. [CrossRef] [Google Scholar]
  22. A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker and C. Woodward, Sundials: suite of non-linear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31 (2005) 363–396. [Google Scholar]
  23. T.J.R. Hughes, W.K. Liu and T.K. Zimmermann, Arbitrary Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Method Appl. Μ. 29 (1981) 329–349. [CrossRef] [Google Scholar]
  24. J. Janela, A. Moura and A. Sequeira A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. J. Comput. Appl. Math. 234 (2010) 2783–2791. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Janela, A. Moura and A. Sequeira, Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. Int. J. Eng. Sci. 48 (2010) 1332–1349. [CrossRef] [Google Scholar]
  26. Y. Jiang, K. Kohara and K. Hiwada, Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke 5 (2000) 2319–2324. [CrossRef] [PubMed] [Google Scholar]
  27. D. Ku, D. Giddens, C. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5 (1985) 293–302. [Google Scholar]
  28. Z.Y. Li, S. Howarth, R.A. Trivedi, J.Μ. U-King-Im, Μ.J. Graves, A. Brown, L. Wang and J.H. Gillard, Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39 (2006) 2611–2622. [CrossRef] [Google Scholar]
  29. R.H. Mackey, L. Venkitachalam and K. Sutton-Tyrrell, Calcifications, arterial stiffness and atherosclerosis. Adv. Cardiol. 44 (2007) 234–244. [CrossRef] [Google Scholar]
  30. J.B. Mendieta, D. Fontanarosa, J. Wang, K.P. Paritala, T. McGahan, T. Lloyd and Z. Li, The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech. Model Mechanobiol. (2020). [Google Scholar]
  31. C. Menichini and X. Yun Xu, Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications. J. Math. Biol. 73 (2016) 1205–1226. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. J. Moradicheghamahi, J. Sadeghiseraji and Μ. Jahangiri, Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. Int. J. Mech. Sci. 150 (2019) 393–403. [CrossRef] [Google Scholar]
  33. J. Mustard, H. Rowsell, E. Murphy, H. Downie and R.J. Jones, Evolution of Atherosclerotic Plaque. University of Chicago Press, IL, USA (1963). [Google Scholar]
  34. F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001. [Google Scholar]
  35. D. Oliveira, S. Aguiar Rosa, J. Tiago, R. Cruz Ferreira, A. Figueiredo Agapito and A. Sequeira, Bicuspid aortic valve aortopathies: an hemodynamics characterization in dilated aortas. Comput. Method Biomech. 22 (2019) 815–826. [CrossRef] [PubMed] [Google Scholar]
  36. C. Palombo and Μ. Kozakova, Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vasc. Pharmacol. 77 (2016) 1–7. [CrossRef] [Google Scholar]
  37. PARDISO. 2018. [Google Scholar]
  38. C.G. Petra, O. Schenk, Μ. Lubin and K. Gäertner, An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput. 36 (2014) 139–162. [Google Scholar]
  39. E. Qaja, P. Tadi and P. Theetha Kariyanna, Carotid Artery Stenosis. StatPearls, Treasure Island (FL), January (2020). [Google Scholar]
  40. S. Ramalho, A. Moura, A. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. Int. J. Numer. Method Biomed. Eng. 28 (2012) 697–713. [CrossRef] [Google Scholar]
  41. F. Shakib, T.J.R. Hughes and Z. Johan A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 89 (1991) 141–219. [CrossRef] [Google Scholar]
  42. D. Tang, C. Yang, J. Zheng, P.K. Woodard, G.A. Sicard, J.E. Safìtz and C. Yuan, 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 32 (2004) 947–960. [CrossRef] [PubMed] [Google Scholar]
  43. J. Tat, L.N. Psaromiligkos and S.S. Daskalopoulou, Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall. Ultrasound Med. Biol. 42 (2016) 2114–2122. [CrossRef] [Google Scholar]
  44. A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity. Prentice-Hall, Upper Saddle River, NJ (1995). [Google Scholar]
  45. J.J. Wentzel, R. Corti, Z.A. Fayad, P. Wisdom, F. Macaluso, M.O. Winkelman, V. Fuster and J.J. Badimon, Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J. Am. Coll. Cardiol. 45 (2005) 846–854. [CrossRef] [Google Scholar]
  46. K.K. Wong, P. Thavornpattanapong, S.C.P. Cheung, Z. Sun and J. Tu, Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc. Disord. 12 (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.