Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 25
Number of page(s) 31
Section Population dynamics and epidemiology
Published online 25 September 2023
  1. L. Almeida, J. Estrada and N. Vauchelet, The sterile insect technique used as a barrier control against reinfestation, in Optimization and Control for Partial Differential Equations, Vol. 29 of Radon Series on Computational and Applied Mathematics. De Gruyter, (2022) 91–112. [Google Scholar]
  2. L. Almeida, J. Estrada and N. Vauchelet, Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations. Math. Model. Nat. Phenom. 17 (2022) 22. [CrossRef] [EDP Sciences] [Google Scholar]
  3. L. Almeida, A. Léculier, G. Nadin and Y. Privat, Optimal control of bistable travelling waves: looking for the best spatial distribution of a killing action to block a pest invasion. arXiv preprint (2022). [Google Scholar]
  4. L. Almeida, A. Léculier and N. Vauchelet, Analysis of the “Rolling carpet” strategy to eradicate an invasive species. SIAM J. Math. Anal. 55 (2023) 275–309. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Anguelov, Y. Dumont and I.V.Y. Djeumen, On the use of Traveling Waves for Pest/Vector elimination using the Sterile Insect Technique, October 2020. arXiv:2010.00861 [math]. [Google Scholar]
  6. D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, edited by J.A. Goldstein, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1975) 5–49. [CrossRef] [Google Scholar]
  7. D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30 (1978) 33–76. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Berestycki, O. Diekmann, C.J. Nagelkerke and P.A. Zegeling, Can a species keep pace with a shifting climate? Bull. Math. Biol. 71 (2009) 399–429. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. H. Berestycki and J. Fang, Forced waves of the Fisher—KPP equation in a shifting environment. J. Diff. Equ. 264 (2018) 2157–2183. [CrossRef] [Google Scholar]
  10. P.-A. Bliman, D. Cardona-Salgado, Y. Dumont and O. Vasilieva, Implementation of Control STRATEGIES for sterile insect techniques. Math. Biosc. 314 (2019) 43–60. [CrossRef] [Google Scholar]
  11. A. Bressan, M.T. Chiri and N. Salehi, On the optimal control of propagation fronts. Math. Models Methods Appl. Sci. 32 (2022) 1109–1140. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Caputo, R. Moretti, Μ. Manica, P. Serini, E. Lampazzi, M. Bonanni, G. Fabbri, V. Pichler, A. della Torre and Μ. Calvitti A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated wolbachia infection in an Italian urban area. Pest Manag. Sci. 76 (2020) 1324–1332. [CrossRef] [PubMed] [Google Scholar]
  13. C. Dufourd and Y. Dumont, Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput. Math. Appl. 66 (2013) 1695–1715. [MathSciNet] [Google Scholar]
  14. V.A. Dyck, J. Hendrichs and A.S. Robinson, Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed. CRC Press, Boca Raton (2021). [Google Scholar]
  15. J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems. J. Dyn. Diff. Equ. 21 (2009) 663–680. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Gato Armas, Z. Menéndez, E. Prieto, R. Argilés, Μ. Rodríguez, W. Baldoquín Rodríguez, Y. Hernandez Barrios, D. Pérez Chacón, J. Anaya, I. Fuentes, C. Lorenzo, K. González, Y. Campo and J. Bouyer, Sterile insect technique: successful suppression of an aedes aegypti field population in Cuba. Insects 1 (2021) 469. [Google Scholar]
  17. L. Girardin, Non-cooperative Fisher—KPP systems: traveling waves and long-time behavior. Nonlinearity 31 (2017) 108. [Google Scholar]
  18. L. Girardin, Non-cooperative Fisher—KPP systems: asymptotic behavior of traveling waves. Math. Models Methods Appl. Sci. 28 (2018) 1067–1104. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Girardin and Q. Griette A Liouville-type result for non-cooperative Fisher—KPP systems and nonlocal equations in cylinders. Acta Appl. Math. 170 (2020) 123–139. ' [Google Scholar]
  20. E. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions. J. Diff. Equ. (2010) 1726. [CrossRef] [Google Scholar]
  21. A. Kolmogorov, I. Petrovskii and N. Piscunov A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Byul. Moskovskogo Gos. Univ. 1 (1938) 1–25. [Google Scholar]
  22. Μ. A. Lewis and P. Van Den Driessche, Waves of extinction from sterile insect release. Math. Biosci. 116 (1993) 221–247. [CrossRef] [Google Scholar]
  23. R. Lui, Biological growth and spread modeled by systems of recursions. I. mathematical theory. Math. Biosci. 93 (1989) 269–295. [CrossRef] [MathSciNet] [Google Scholar]
  24. V.S. Manoranjan and P. Van Den Driessche, On a diffusion model for sterile insect release. Math. Biosci. 79 (1986) 199–208. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Seirin Lee, R.E. Baker, E.A. Gaffney and S.M. White, Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks. J. Theor. Biol. 331 (2013) 78–90. [CrossRef] [Google Scholar]
  26. J. Smoller, Shock Waves and Reaction—Diffusion Equations. Springer Science & Business Media (2012). [Google Scholar]
  27. Μ. Strugarek, H. Bossin and Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Modell. 68 (2019) 443–470. [CrossRef] [Google Scholar]
  28. E. Trélat, J. Zhu and E. Zuazua, Optimal Population Control Through Sterile Males. Working paper or preprint, October 2017. [Google Scholar]
  29. E. Trélat, J. Zhu and E. Zuazua, Allee optimal control of a system in ecology. Math. Models Methods Appl. Sci. 28 (2018) 1665–1697. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Volpert, V. Volpert and V. Volpert, Traveling wave solutions of parabolic systems, Vol. 140 of Translations of Mathematical Monographs. American Mathematical Society (1994). [CrossRef] [Google Scholar]
  31. H.F. Weinberger, Μ. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45 (2002) 183–218. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A. Parker, J. Gilles, K. Bourtzis, J. Bouyer and Z. Xi, Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572 (2019) 1. [Google Scholar]
  33. Z. Zhu, B. Zheng, Y. Shi, R. Yan and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models. Nonlinear Dyn. 107 (2022) 1–13. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.