Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 24
Number of page(s) 28
Section Population dynamics and epidemiology
Published online 26 September 2023
  1. S. Alizon, F. Luciani and R.R. Regoes, Epidemiological and clinical consequences of within-host evolution. Trends Microbiol. 19 (2011) 24–32. [CrossRef] [Google Scholar]
  2. C.F. Amabile-Cuevas, Antibiotics and Antibiotic Resistance in the Environment. CRC Press (2015). [CrossRef] [Google Scholar]
  3. R.M. Anderson, Populations and infectious diseases: ecology or epidemiology? J. Anim. Ecol. 60 (1991) 1–50. [CrossRef] [Google Scholar]
  4. F. Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12 (2019) 365–383. [CrossRef] [Google Scholar]
  5. R. Bürger, Perturbations of positive semigroups and applications to population genetics. Math. Z. 197 (1988) 259–272. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.B. Burie, R. Djidjou-Demasse and A. Ducrot, Asymptotic and transient behaviour for a nonlocal problem arising in population genetics. Eur. J. Appl. Math. 31 (2020) 84–110. [CrossRef] [Google Scholar]
  7. F. Clarelli, A. Palmer, B. Singh, M. Storflor, S. Lauksund, T. Cohen, et al., Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLoS Comput. Biol. 16 (2020) e1008106. [CrossRef] [Google Scholar]
  8. J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Diff. Equ. 2007 (2007) 23. [Google Scholar]
  9. E.M.C. D’Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. PLoS One 3 (2008) e4036. [CrossRef] [PubMed] [Google Scholar]
  10. T. Day and A.F. Read, Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Computat. Biol. 12 (2016) e1004689. [CrossRef] [Google Scholar]
  11. W. Demczuk, I. Martin, P. Sawatzky, V. Allen, B. Lefebvre, L. Hoang, et al., Equations to predict antimicrobial MICs in Neisseria gonorrhoeae using molecular antimicrobial resistance determinants. Antimicrob. Agents Chemother. 64 (2020). [CrossRef] [Google Scholar]
  12. O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. O. Diekmann, P.E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton- Jacobi approach. Theoret. Popul. Biol. 67 (2005) 257–271. [CrossRef] [Google Scholar]
  14. R. Djidjou-Demasse, S. Alizon and M.T. Sofonea, Within-host bacterial growth dynamics with both mutation and horizontal gene transfer. J. Math. Biol. 82 (2021) 16. [CrossRef] [PubMed] [Google Scholar]
  15. R. Djidjou-Demasse, A. Ducrot and F. Fabre, Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens. Math. Models Methods Appl. Sci. 27 (2017) 231–290. [Google Scholar]
  16. R. Djidjou-Demasse, Antimicrobial-Quantitative-Resistance-v1 (2021). [Google Scholar]
  17. G.L. Drusano, W. Liu, D.L. Brown, L.B. Rice and A. Louie, Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus taureus. J. Infect. Dis. 199 (2009) 219–226. [CrossRef] [PubMed] [Google Scholar]
  18. EUCAST: Clinical Breakpoints and Dosing of Antibiotics (2023). [Google Scholar]
  19. S. Gagneux, The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312 (2006) 1944–1946. [CrossRef] [PubMed] [Google Scholar]
  20. P. Geli, R. Laxminarayan, M. Dunne and D.L. Smith, “One-size-fits-all”? Optimizing treatment duration for bacterial infections. PLoS ONE 7 (2012) e29838. [CrossRef] [PubMed] [Google Scholar]
  21. S.A.H. Geritz, J.A.J. Metz, Kisdi É and G. Meszéna, Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78 (1997) 2024–2027. [CrossRef] [Google Scholar]
  22. E. Gjini and P.H. Brito, Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: classical vs. adaptive treatment. PLoS Comput. Biol. 12 (2016) e1004857. [CrossRef] [Google Scholar]
  23. H. Goossens, M. Ferech, R. Vander Stichele, M. Elseviers, ESAC Project Group, Outpatient Antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365 (2005) 579–587. [CrossRef] [PubMed] [Google Scholar]
  24. J.K. Hale, Asymptotic Behavior of Dissipative Systems. American Mathematical Society (1988). [Google Scholar]
  25. A. Handel, E. Margolis and B.R. Levin, Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 256 (2009) 655–662. [CrossRef] [Google Scholar]
  26. E. Hansen, R.J. Woods and A.F. Read, How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol. 15 (2017) e2001110. [CrossRef] [Google Scholar]
  27. T.B. Kepler and A.S. Perelson, Drug Concentration heterogeneity facilitates the evolution of drug resistance. Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 11514–11519. [CrossRef] [PubMed] [Google Scholar]
  28. R.D. Kouyos, C.J.E. Metcalf, R. Birger, E.Y. Klein, P. Abel zur Wiesch, P. Ankomah, et al., The path of least resistance: aggressive or moderate treatment? Proc. Roy. Soc. B: Biol. Sci. 281 (2014) 20140566. [Google Scholar]
  29. A. Lange and N.M. Ferguson, Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5 (2009) e1000536. [CrossRef] [Google Scholar]
  30. H.H. Lee, M.N. Molla, C.R. Cantor and J.J. Collins, Bacterial charity work leads to population-wide resistance. Nature 467 (2010) 82–85. [CrossRef] [PubMed] [Google Scholar]
  31. M. Levert, O. Zamfir, O. Clermont, O. Bouvet, S. Lespinats, M.C. Hipeaux, et al., Molecular and evolutionary bases of within-patient genotypic and phenotypic diversity in Escherichia coli extraintestinal infections. PLoS Pathogens 6 (2010) e1001125. [CrossRef] [PubMed] [Google Scholar]
  32. S. Lion and J.A.J. Metz, Beyond R0 maximisation: on pathogen evolution and environmental dimensions. Trends Ecol. Evol. 33 (2018) 458–473. [CrossRef] [Google Scholar]
  33. M. Lipsitch and B.R. Levin, The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41 (1997) 363–373. [CrossRef] [PubMed] [Google Scholar]
  34. L. Loewe, High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302 (2003) 1558–1560. [CrossRef] [PubMed] [Google Scholar]
  35. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77 (2015) 1–22. [Google Scholar]
  36. F. Luciani and S. Alizon, The evolutionary dynamics of a rapidly mutating virus within and between hosts: the case of hepatitis C virus. PLoS Comput. Biol. 5 (2009). [Google Scholar]
  37. M.N. Martinez, M.G. Papich and G.L. Drusano, Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 56 (2012) 2795–2805. [CrossRef] [PubMed] [Google Scholar]
  38. J.A.J. Metz, S.A.H. Geritz, G. Meszena, F.J.A. Jacobs and J.S. van Heerwaarden, Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction [monograph] (1995). [Google Scholar]
  39. J.A.J. Metz, S.D. Mylius and O. Diekmann, When does evolution optimize? Evol. Ecol. Res. 10 (2008) 629–654. [Google Scholar]
  40. P. Meyer-Nieberg, Banach Lattices. Universitext. Springer-Verlag, Berlin, Heidelberg (1991). [CrossRef] [Google Scholar]
  41. N. Mideo, S. Alizon and T. Day, Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23 (2008) 511–517. [CrossRef] [Google Scholar]
  42. A.S. Millan, R. Peña-Miller, M. Toll-Riera, Z.V. Halbert, A.R. McLean, B.S. Cooper, et al., Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5 (2014) 5208. [CrossRef] [Google Scholar]
  43. J.W. Mouton, P.G. Ambrose, R. Canton, G.L. Drusano, S. Harbarth, A. MacGowan, et al., Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist. Updates 14 (2011) 107–117. [CrossRef] [Google Scholar]
  44. S.D. Mylius and O. Diekmann, On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74 (1995) 218–224. [CrossRef] [Google Scholar]
  45. Q.H. Nguyen, L. Contamin, T.V.A. Nguyen and A.L. Bañuls, Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol. Appl. 11 (2018) 1498–1511. [CrossRef] [Google Scholar]
  46. T.T. Nguyen, J. Guedj, E. Chachaty, J. de Gunzburg, A. Andremont, and F. Mentré, Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant Enterobacteria excreted. PLoS Comput. Biol. 10 (2014) e1003840. [CrossRef] [Google Scholar]
  47. S.K. Olofsson and O. Cars, Optimizing drug exposure to minimize selection of antibiotic resistance. Clin. Infect. Dis. 45 (2007) S129–S136. [CrossRef] [PubMed] [Google Scholar]
  48. S.R. Palumbi, Humans as the world’s greatest evolutionary force. Science 293 (2001) 1786–1790. [CrossRef] [PubMed] [Google Scholar]
  49. A. Pazy, Semigroups of linear operators and applications to partial differential equations. 44 (1983) VIII–279. [Google Scholar]
  50. A.F. Read, T. Day and S. Huijben, The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 10871–10877. [CrossRef] [PubMed] [Google Scholar]
  51. M.F. Schenk, I.G. Szendro, J. Krug and J.A.G.M. de Visser, Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genet. 8 (2012) e1002783. [CrossRef] [Google Scholar]
  52. P. Schulz zur Wiesch, J. Engelstadter and S. Bonhoeffer, Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob. Agents Chemother. 54 (2010) 2085–2095. [CrossRef] [PubMed] [Google Scholar]
  53. P. Sniegowski, Evolution: bacterial mutation in stationary phase. Curr. Biol. 14 (2004) R245–R246. [CrossRef] [Google Scholar]
  54. F. Svara and D.J. Rankin, The evolution of plasmid-carried antibiotic resistance. BMC Evol. Biol. 11 (2011) 130. [CrossRef] [Google Scholar]
  55. S.J. Tazzyman and S. Bonhoeffer, Plasmids and evolutionary rescue by drug resistance. Evolution 68 (2014) 2066–2078. [CrossRef] [Google Scholar]
  56. H.R. Thieme, Mathematics in Population Biology. Princeton University Press (2003). [Google Scholar]
  57. G.F. Webb, Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinb. A: Math. 84 (1979) 19–33. [CrossRef] [Google Scholar]
  58. P.A. zur Wiesch, R. Kouyos, J. Engelstädter, R.R. Regoes and S. Bonhoeffer, Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11 (2011) 236–247. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.