Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 23
Number of page(s) 17
Section Population dynamics and epidemiology
Published online 15 September 2023
  1. P. Auger, R. Bravo de la Parra, J. Poggiale, E. Sánchez and L. Sanz, Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life Rev. 5 (2008) 79–105. [CrossRef] [Google Scholar]
  2. M. Aziz-Alaoui, F. Najm and R. Yafia, SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity. Math. Model. Natural Phenomena 16 (2021) 31. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Begon, M. Bennett, R.G. Bowers, N.P. French, S.M. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol. Infect. 129 (2002) 147–153. [CrossRef] [PubMed] [Google Scholar]
  4. S. Boonpatcharanon, J. Heffernan and H. Jankowski, Estimating the basic reproduction number at the beginning of an outbreak under incomplete data. PLos One (2021). [Google Scholar]
  5. F. Brauer, Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298 (2004) 418–431. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brauer and C. Castillo-Chavez, Mathematical Models for Communicable Diseases. Society for Industrial and Applied Mathematics. (2012). [Google Scholar]
  7. B. Buonomo, A note on the direction of the transcritical bifurcation in epidemic models. Nonlinear Anal. Model. Control 20 (2015) 38–55. [CrossRef] [MathSciNet] [Google Scholar]
  8. N. Chitnis, J. Hyman and J. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70 (2008) 1272–1296. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. M.C. Coates, A. Kintu, N. Gupta, E.B. Wroe and A.J. Adler, Burden of non-communicable diseases from infectious causes in 2017: a modelling study. Lancet Global Health 8 (2020) e1489–e1498. [CrossRef] [Google Scholar]
  10. P.L. Delamater, E.J. Street, T.F. Leslie, Y.T. Yang and K.H. Jacobsen, Complexity of the basic reproduction number (r0). Emerg. Infect. Dis. 25 (2019) 1–4. [CrossRef] [Google Scholar]
  11. Z. Feng, C. Castillo-Chavez and A. Capurro, A model for tuberculosis with exogenous reinfection. Theoret. Popul. Biol. 57 (2000) 235–247. [CrossRef] [Google Scholar]
  12. M.H. Forouzanfar et al., Gbd risk factors collaborators: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388 (2016) 1659–1724. [CrossRef] [PubMed] [Google Scholar]
  13. E. Garde, B. Ibrahim, A. Kovács and S. Schuster, Differential equation-based minimal model describing metabolic oscillations in bacillus subtilis biofilms. Roy. Soc. Open Sci. 7 (2020) 190810. [CrossRef] [Google Scholar]
  14. D. Greenhalgh, O. Diekmann and M. de Jong, Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math. Biosci. 165 (2000) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Gumel, Causes of backward bifurcations in some epidemiological models. J. Math. Anal. Appl. 395 (2012) 355–365. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Gumel, E. Iboi, C. Ngonghala and E. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: modeling, analysis and simulations. Infecti. Dis. Model. 6 (2021) 148–168. [Google Scholar]
  17. K. Hadeler and P.V. den Driessche, Backward bifurcation in epidemic control. Math. Biosci. 146 (1997) 15–35. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel. Computation 8 (2020) 49. [CrossRef] [Google Scholar]
  19. K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology. Computation 10 (2022) 97. [CrossRef] [Google Scholar]
  20. K. Hattaf, A. Lashari, Y. Louartassi and N. Yousfi, A delayed SIR epidemic model with a general incidence rate. Electron. J. Qual. Theory Differ. Equ. (2013) 1–9. [CrossRef] [Google Scholar]
  21. F. Hilker, T. Sun, L. Allen and F. Hamelin, Separate seasons of infection and reproduction can lead to multi-year population cycles. J. Theoret. Biol. 489 (2020) 110158. [CrossRef] [Google Scholar]
  22. M. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton University, Princeton (2007). [Google Scholar]
  23. K. Mark and T. Dobromir, The dynamics of a simple, risk-structured HIV model. Math. Biosci. Eng. 17 (2020) 4184–4209. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Martcheva, An Introduction to Mathematical Epidemiology. Springer-Verlag GmbH (2015). [Google Scholar]
  25. M. Marvá, E. Venturino and R.B. de la Parra, A time scales approach to coinfection by opportunistic diseases. J. Appl. Math. 2015 (2015) 1–10. [CrossRef] [Google Scholar]
  26. M. Marvá, R.B. de la Parra and E. Venturino, Modelling the role of opportunistic diseases in coinfection. Math. Model. Natural Phenomena 13 (2018) 28. [CrossRef] [EDP Sciences] [Google Scholar]
  27. E. Mendenhall, B.A. Kohrt, C.H. Logie and A.C. Tsai, Syndemics and clinical science. Nature Med. 28 (2022) 1359–1362. [CrossRef] [PubMed] [Google Scholar]
  28. N.-D.O. Opoku, G. Bader and E. Fiatsonu, Controlling crime with its associated cost during festive periods using mathematical techniques. Chaos Solitons Fractals 145 (2021) 110801. [CrossRef] [Google Scholar]
  29. A. Prüss-Ustün, E. van Deventer, P.P. Mudu, D. Campbell-Lendrum, C. Vickers, I. Ivanov, F. Forastiere, S. Gumy, C. Dora, H. Adair-Rohani and M. Neira, Environmental risks and non-communicable diseases. BMJ 364 (2019) 1265. [Google Scholar]
  30. S.M. Raimundo, H. Yang and E. Massad, Contagious criminal career models showing backward bifurcations: implications for crime control policies. J. Appl. Math. 2018 (2018) 1–16. [CrossRef] [Google Scholar]
  31. T. Reluga, J. Medlock and A. Perelson, Backward bifurcations and multiple equilibria in epidemic models with structured immunity. J. Theoret. Biol. 252 (2008) 155–165. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. M. Singer, Introduction to Syndemics. John Wiley & Sons, Inc. (2009). [Google Scholar]
  33. M. Singer, Development, coinfection, and the syndemics of pregnancy in sub-Saharan Africa. Inf. Dis. Poverty 2 (2013) 2–10. [CrossRef] [Google Scholar]
  34. P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40 (2000) 525–540. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  35. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
  36. E. Venturino and S. Pandey, A TB model: is disease eradication possible in India? Math. Biosci. Eng. 15 (2017) 233–254. [CrossRef] [Google Scholar]
  37. WHO, The Top 10 Causes of Death. World Health Organization. Retrieved June 2021. [Google Scholar]
  38. E. Wong, S. Olivier, R. Gunda et al., Convergence of infectious and non-communicable disease epidemics in rural South Africa: a cross-sectional, population-based multimorbidity study. Lancet Global Health 9 (2021) e967–e976. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.