Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 22
Number of page(s) 27
Section Mathematical physiology and medicine
Published online 30 August 2023
  1. A.M. Abel, C. Yang, M.S. Thakar and S. Malarkannan, Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9 (2018) 1869. [CrossRef] [Google Scholar]
  2. L. Almeida, P. Bagnerini, G. Fabrini, B.D. Hughes and T. Lorenzi, Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model. ESAIM: Math. Model. Numer. Anal. 53 (2019) 1157–1190. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. F.E. Alvarez, J.A. Carrillo and J. Clairambault, Evolution of a structured cell population endowed with plasticity of traits under constraints on and between the traits. J. Math. Biol. 85 (2022) 64. [CrossRef] [PubMed] [Google Scholar]
  4. E.F. Alvarez and J. Clairambault, Phenotype divergence and cooperation in isogenic multicellularity and in cancer. Submitted, June 2023. [Google Scholar]
  5. A. Ardaševa, R.A. Gatenby, A.R.A. Anderson, H.M. Byrne, P.K. Maini and T. Lorenzi, A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels. Bull. Math. Biol. 82 (2020) 81. [CrossRef] [PubMed] [Google Scholar]
  6. M. Bertolaso, Philosophy of Cancer. A Dynamic and Relational View. Springer Publisher (2016). [CrossRef] [Google Scholar]
  7. N. Champagnat, R. Ferrière and Méléard, From individual stochastic processes to macroscopic models in adaptive evolution. Stochastic Models 24 (2008) 2–44. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Almeida, A. Escargueil and J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation. Cancer Res. 75 (2015) 930–939. [Google Scholar]
  9. R.H. Chisholm, T. Lorenzi and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochem. Biophys. Acta 1860 (2016) 2627–2645. [CrossRef] [Google Scholar]
  10. R.H. Chisholm, T. Lorenzi, L. Desvillettes and B.D. Hughes, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Z. Angew. Math. Phys. 67 (2016) 100. [CrossRef] [Google Scholar]
  11. J. Clairambault and C. Pouchol, A survey of adaptive cell population dynamics models of emergence of drug resistance in cancer, and open questions about evolution and cancer. BIOMATH 8 (2019) 23. [CrossRef] [Google Scholar]
  12. J. Clairambault, Plasticity in cancer cell populations: biology, mathematics and philosophy of cancer, in Springer LNBI 12508, edited by G. Bebis, M. Alekseyev, H. Cho, J. Gevertz and M. Rodriguez Martinez. (2020) 3–9. [Google Scholar]
  13. J. Clairambault, Mathematical modelling of cancer growth and drug treatments: taking into account cell population heterogeneity and plasticity. Paper #427 in Proceedings of ECC 2023 European Conference on Control, Bucharest, June 2023. [Google Scholar]
  14. M. Delitala and T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer. Discrete Continuous Dyn. Syst. B 18 (2013) 891. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y.Y. Han, D.D. Liu and L.H. Li, PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10 (2020) 727–742. [Google Scholar]
  16. Z. Kaid, A. Lakmeche, J. Clairambault and M. Helal, A dynamic model of tumor growth and of the immune response. Nonlinear Stud. 30 (2023) 1–23. [MathSciNet] [Google Scholar]
  17. R. Kalluri and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin. Invest. 19 (2009) 1420–1428. [CrossRef] [PubMed] [Google Scholar]
  18. J.H. Lee, E. Shklovskaya, S.Y. Lim, M.S. Carlino, A.M. Menzies, A. Stewart, B. Pedersen, M. Irvine, S. Alavi, J.Y.H. Yang, D. Strbenac, R.P.M. Saw, J.F. Thompson, J.S. Wilmott, R.A. Scolyer, G.V. Long, R.F. Kefford and H. Rizos, Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition. Nat. Commun. 11 (2020) 1897. [CrossRef] [Google Scholar]
  19. F. Le Louedec, F. Leenhardt, C. Marin, A. Chatelut, A. Evrard and J. Ciccolini, Cancer immunotherapy dosing: a pharmacokinetic/pharmacodynamic perspective. Vaccines 8 (2020) 632. [CrossRef] [PubMed] [Google Scholar]
  20. T. Lorenzi, R.H. Chisholm and J. Clairambault, Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations. Biol. Direct 11 (2016) 1–17. [Google Scholar]
  21. T. Lorenzi and C. Pouchol, Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks. Nonlinearity 33 (2020) 5791. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Math. Model. Numer. Anal. 47 (2013) 377–399. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. C.E. Meacham and S.J. Morrison, Tumour heterogeneity and cancer cell plasticity. Nature 501 (2013) 328–337. [CrossRef] [PubMed] [Google Scholar]
  24. L.G. Meza Guzman, L. Keating and S.E. Nicholson, Natural killer cells: tumor surveillance and signaling. Cancers 12 (2020) 952. [CrossRef] [PubMed] [Google Scholar]
  25. A. Olivier and C. Pouchol, Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. J. Optim. Theory Appl. 181 (2019) 479–503. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Perthame, Transport Equations in Biology. Birkhäuser, Boston (2007). [Google Scholar]
  27. S. Pesce, M. Greppi, F. Grossi, G. Del Zotto, L. Moretta, S. Sivori, C. Genova and E. Marcenaro, PD/1-PD-Ls Checkpoint: insight on the potential role of NK cells. Front. Immunol. 10 (2019) 1242. [CrossRef] [Google Scholar]
  28. C. Pouchol, J. Clairambault, A. Lorz and E. Trélat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116 (2018) 268–308. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Pouchol, Modelling interactions between tumour cells and supporting adipocytes in breast cancer. PhD thesis, UPMC (2015). [Google Scholar]
  30. T. Pradeu, Philosophy of Immunology. Cambridge University Press (2019). [CrossRef] [Google Scholar]
  31. C. Robert, J. Schachter, G.V. Long, A. Arance, J.J. Grob, L. Mortier and J. Larkin. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372 (2015) 2521–2532. [CrossRef] [PubMed] [Google Scholar]
  32. R.D. Schreiber, L.J. Old and M.J. Smyth, Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331 (2011) 1565–1570. [CrossRef] [PubMed] [Google Scholar]
  33. S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. McDermott, N. Azizian, L. Zou, M.A. Fischbach, K.-K. Wong, K. Brandstetter, B. Wittner, S. Ramaswamy, M. Classon and J. Settleman, A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141 (2010) 69–80. [CrossRef] [PubMed] [Google Scholar]
  34. S. Shen and J. Clairambault, Cell plasticity in cancer cell populations (review) [version 1; peer review: 2 approved]. F1000Research 9 (2020) 635–650. [CrossRef] [Google Scholar]
  35. T.H. Stewart, Immune mechanism and tumour dormancy. Rev. Med. 56 (1996) 74. [Google Scholar]
  36. D.G. Tang, Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22 (2012) 457–472. [CrossRef] [PubMed] [Google Scholar]
  37. K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006) 663–676. [CrossRef] [PubMed] [Google Scholar]
  38. A.M. van der Leun, D.S. Thommen and T.N. Schumacher, CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20 (2020) 218–232. [CrossRef] [PubMed] [Google Scholar]
  39. N. Wright and M. Alison, The Biology of Epithelial Cell Populations. Oxford University Press (1984). [Google Scholar]
  40. Y.A. Yabo, S.P. Niclou and A. Golebiewska, Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro-oncology 24 (2022) 669–682. [CrossRef] [PubMed] [Google Scholar]
  41. H. Zhang, Z. Dai, Z. Wang, N. Zhang, L. Zhang, W.-J. Zeng, Z. Liu and Q. Cheng, Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 40 (2021) 184. [CrossRef] [Google Scholar]
  42. L.I. Zon (Ed.), Hematopoiesis: A Developmental Approach. Oxford University Press (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.