Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 21
Number of page(s) 19
Section Mathematical physiology and medicine
Published online 18 August 2023
  1. R. Acharya and M.K. Sundareshan, Development of optimal drug administration strategies for cancer-chemotheraphy in the framework of systems theory. Int. J. Biomed. Comput. 15 (1984) 139–150. [CrossRef] [Google Scholar]
  2. H. Amin, Y. Yang, Y. Shen, E. Estey, F. Giles, S. Pierce, H. Kantarjian, S. O’Brien, I. Jilani and M. Albitar, Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias. Leukemia 19 (2005) 1567–1572. [CrossRef] [PubMed] [Google Scholar]
  3. K. Anderson, C. Lutz, F.W. Van Delft, C.M. Bateman, Y. Guo, S.M. Colman, H. Kempski, A.V. Moorman, I. Titley, J. Swansbury, et al., Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469 (2011) 356–361. [CrossRef] [PubMed] [Google Scholar]
  4. P.M. Altrock, L.L. Liu and F. Michor, The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15 (2015) 730. [Google Scholar]
  5. G.M. Armstrong and C.P. Midgley, Applications: The exponential-decay law applied to medical dosages. Math. Teacher 80 (1987) 110–13. [CrossRef] [Google Scholar]
  6. E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva, et al., An estimation of the number of cells in the human body. Ann. Human Biol. 40 (2013) 463–471. [CrossRef] [PubMed] [Google Scholar]
  7. J. Choi, S.J. Lee, Y.A. Lee, H.G. Maeng, J.K. Lee and Y.W. Kang, Reference values for peripheral blood lymphocyte subsets in a healthy Korean population. Immune Netw. 14 (2014) 289–295. [CrossRef] [PubMed] [Google Scholar]
  8. B. Asselin and C. Rizzari, Asparaginase pharmacokinetics and implications of therapeutic drug monitoring. Leukemia Lymphoma 56 (2015) 2273–2280. [CrossRef] [PubMed] [Google Scholar]
  9. F.M. Balis, J.S. Holcenberg and W.A. Bleyer, Clinical pharmacokinetics of commonly used anticancer drugs. Clin. Pharmacokinet. 8 (1983) 202–232. [CrossRef] [PubMed] [Google Scholar]
  10. D. Bhojwani and C.-H. Pui, Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14 (2013) e205–e217. [CrossRef] [Google Scholar]
  11. D. Bonnet and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3 (1997) 730–737. [CrossRef] [PubMed] [Google Scholar]
  12. J.A. Bull and H.M. Byrne, The hallmarks of mathematical oncology. Proc. IEEE (2022). [Google Scholar]
  13. D. Campana, Minimal residual disease in acute lymphoblastic leukemia, Hematology 2010. Am. Soc. Hematol. Educ. Program Book 2010 (2010) 7–12. [CrossRef] [PubMed] [Google Scholar]
  14. G. Clapp and D. Levy, A review of mathematical models for leukemia and lymphoma. Drug Discov. Today Dis. Models 16 (2015) 1–6. [CrossRef] [Google Scholar]
  15. S. Chulián, A. Martínez-Rubio, A. Marciniak-Czochra, T. Stiehl, C. B. Goñi, J.F.R. Gutiérrez, M.R. Orellana, A.C. Robleda, V.M. Pérez-García and M. Rosa, Dynamical properties of feedback signalling in b lymphopoiesis: a mathematical modelling approach. J. Theor. Biol. 522 (2021) 110685. [CrossRef] [Google Scholar]
  16. D. Czock, F. Keller, F.M. Rasche and U. Häussler, Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 44 (2005) 61–98. [CrossRef] [PubMed] [Google Scholar]
  17. Q. Dai, G. Zhang, H. Yang, Y. Wang, L. Ye, L. Peng, R. Shi, S. Guo, J. He and Y. Jiang, Clinical features and outcome of pediatric acute lymphoblastic leukemia with low peripheral blood blast cell count at diagnosis. Medicine 100 (2021). [Google Scholar]
  18. R.A. Egler, S.P. Ahuja and Y. Matloub, L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother. 7 (2016) 62. [CrossRef] [PubMed] [Google Scholar]
  19. R.A. Gatenby and P.K. Maini, Mathematical oncology: cancer summed up. Nature 421 (2003) 321–321. [CrossRef] [PubMed] [Google Scholar]
  20. D. Hanahan and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144 (2011) 646–674. [CrossRef] [PubMed] [Google Scholar]
  21. G.B. Haycock, G.J. Schwartz and D.H. Wisotsky, Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J. Pediatr. 93 (1978) 62–66. [CrossRef] [Google Scholar]
  22. S.P. Hunger, X. Lu, M. Devidas, B.M. Camitta, P.S. Gaynon, N.J. Winick, G.H. Reaman and W.L. Carroll, Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J. Clin. Oncol. 30 (2012) 1663. [CrossRef] [PubMed] [Google Scholar]
  23. D. Jayachandran, A.E. Rundell, R.E. Hannemann, T.A. Vik and D. Ramkrishna, Optimal chemotherapy for leukemia: a model-based strategy for individualized Treatment. PLoS One 9 (2014) e109623. [CrossRef] [PubMed] [Google Scholar]
  24. M. Karon, E.J. Freireich, E. Frei III, R. Taylor, I.J. Wolman, I. Djerassi, S.L. Lee, A. Sawitsky, J. Hananian, O. Selawry, et al., The role of vincristine in the treatment of childhood acute leukemia. Clin. Pharmacol. Ther. 7 (1966) 332–339. [CrossRef] [Google Scholar]
  25. K. Kay and I.M. Hastings, Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs. PLoS Comput. Biol. 9 (2013) e1003151. [CrossRef] [Google Scholar]
  26. G.J. Kimmel, F.L. Locke and P.M. Altrock, The roles of T cell competition and stochastic extinction events in chimeric antigen receptor T cell therapy. Proc. Roy. Soc. B 288 (2021) 20210229. [CrossRef] [PubMed] [Google Scholar]
  27. N.L. Komarova, Principles of regulation of self-renewing cell lineages. PLoS One 8 (2013) e72847. [CrossRef] [PubMed] [Google Scholar]
  28. T. Lorenzi, A. Marciniak-Czochra and T. Stiehl, A structured population model of clonal selection in acute leukemias with multiple maturation stages. J. Math. Biol. 79 (2019) 1587–1621. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. H. Ma, H. Sun and X. Sun, Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: a seer analysis. Sci. Rep. 4 (2014) 1–7. [Google Scholar]
  30. M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol. 33 (1994) 89–109. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. A. Marciniak-Czochra, T. Stiehl, A.D. Ho, W. Jäger and W. Wagner, Modeling of asymmetric cell division in hematopoietic stem cells regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18 (2009) 377–386. [CrossRef] [PubMed] [Google Scholar]
  32. S. Mathur and J. Sutton, Personalized medicine could transform healthcare. Biomed. Rep. 7 (2017) 3–5. [CrossRef] [PubMed] [Google Scholar]
  33. Á. Martínez-Rubio, S. Chulián, C. Blázquez Goñi, M. Ramírez Orellana, A. Pérez Martínez, A. Navarro-Zapata, C. Ferreras, V.M. Pérez-García and M. Rosa, A mathematical description of the bone marrow dynamics during CAR T-cell therapy in B-cell childhood acute lymphoblastic leukemia. Int. J. Mol. Sci. 22 (2021) 6371. [CrossRef] [Google Scholar]
  34. M. Jagannathan-Bogdan and L.I. Zon, Hematopoiesis. Development 140 (2013) 2463–2467. [CrossRef] [PubMed] [Google Scholar]
  35. O. León-Triana, S. Sabir, G.F. Calvo, J. Belmonte-Beitia, S. Chulián, Á. Martínez-Rubio, M. Rosa, A. Pérez-Martínez, M. Ramirez-Orellana and V.M. Pérez-García, CAR T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from mathematical models. Commun. Nonlinear Sci. Numer. Simul. 94 (2021) 105570. [CrossRef] [Google Scholar]
  36. O. Linderkamp, H. Versmold, K. Riegel and K. Betke, Estimation and prediction of blood volume in infants and children. Eur. J. Pediatr. 125 (1977) 227–234. [CrossRef] [Google Scholar]
  37. M. Mesegué, A. Alonso-Saladrigues, S. Pérez-Jaume, A. Comes-Escoda, J.L. Dapena, A. Faura, N. Conde, A. Catala, A. Ruiz-Llobet, E. Zapico-Muñiz, et al., Lower incidence of clinical allergy with peg-asparaginase upfront versus the sequential use of native E. coli asparaginase followed by peg-asp in pediatric patients with acute lymphoblastic leukemia. Hematol. Oncol. 39 (2021) 687–696. [CrossRef] [PubMed] [Google Scholar]
  38. A. Möricke, M. Zimmermann, A. Reiter, H. Gadner, E. Odenwald, J. Harbott, W.-D. Ludwig, H. Riehma and M. Schrappe, Prognostic impact of age in children and adolescents with acute lymphoblastic leukemia: data from the trials all-bfm 86, 90, and 95. Klin. Pädiatr. 217 (2005) 310–320. [CrossRef] [PubMed] [Google Scholar]
  39. C.L. Mouser, E.S. Antoniou, J. Tadros and E.K. Vassiliou, A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Theor. Biol. Med. Model. 11 (2014) 1–14. [CrossRef] [Google Scholar]
  40. O. Nave, A new protocol applied to cancer treatment-mathematical model-singular perturbed vector field algorithm (2022). [Google Scholar]
  41. S.H. Orkin and L.I. Zon, Hematopoiesis: an evolving paradigm for stem cell Biology. Cell 132 (2008) 631–644. [CrossRef] [PubMed] [Google Scholar]
  42. E. Pefani, N. Panoskaltsis, A. Mantalaris, M.C. Georgiadis and E.N. Pistikopoulos, Chemotherapy drug scheduling for the induction treatment of patients with acute myeloid leukemia. IEEE Trans. Biomed. Eng. 61 (2014) 2049–2056. [CrossRef] [PubMed] [Google Scholar]
  43. V.M. Pérez-García, O. León-Triana, M. Rosa and A. Pérez-Martínez, CAR T cells for T-cell leukemias: Insights from mathematical models. Commun. Nonlinear Sci. Numer. Simul. 96 (2021) 105684. [CrossRef] [Google Scholar]
  44. C.-H. Pui, D. Campana and W.E. Evans, Childhood acute lymphoblastic leukaemia–current status and future perspectives. Lancet Oncol. 2 (2001) 597–607. [CrossRef] [Google Scholar]
  45. C.-H. Pui, L.L. Robison and A.T. Look, Acute lymphoblastic leukaemia. Lancet 371 (2008). [Google Scholar]
  46. C.-H. Pui and W.E. Evans, Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354 (2006) 166–178. [CrossRef] [PubMed] [Google Scholar]
  47. M. Qweider, J.M. Gilsbach and V. Rohde, Inadvertent intrathecal vincristine administration: a neurosurgical emergency: case report. J. Neurosurg. Spine 6 (2007) 280–283. [CrossRef] [PubMed] [Google Scholar]
  48. A. Raes, S. Van Aken, M. Craen, R. Donckerwolcke, J.V. Walle, A reference frame for blood volume in children and adolescents. BMC Pediatr. 6 (2006) 1–8. [CrossRef] [Google Scholar]
  49. M. Ronghe, G. Burke, S. Lowis and E. Estlin, Remission induction therapy for childhood acute lymphoblastic leukaemia: clinical and cellular pharmacology of vincristine, corticosteroids, l-asparaginase and anthracyclines. Cancer Treatm. Rev. 27 (2001) 327–337. [CrossRef] [Google Scholar]
  50. S. Rubinow and J. Lebowitz, A mathematical model of the chemotherapeutic treatment of acute myeloblastic leukemia. Biophys. J. 16 (1976) 1257–1271. [CrossRef] [Google Scholar]
  51. A. Ruiz-Llobet, S. Gassiot, E. Sarrate, J. Zubicaray, J.L. Dapena, S. Rives, J. Sevilla, Á. Menáirguez López, M. Panesso Romero, C. Montoya, et al., Venous thromboembolism in pediatric patients with acute lymphoblastic leukemia under chemotherapy treatment. risk factors and usefulness of thromboprophylaxis. Results of lal-sehop-pethema-2013. J. Thromb. Haemost. (2022). [Google Scholar]
  52. T. Szczepański, Why and how to quantify minimal residual disease in acute lymphoblastic leukemia? Leukemia 21 (2007) 622–626. [CrossRef] [PubMed] [Google Scholar]
  53. T. Stiehl and A. Marciniak-Czochra, Characterization of stem cells using mathematical models of multistage cell lineages. Math. Comput. Model. 53 (2011) 1505–1517. [CrossRef] [Google Scholar]
  54. T. Terwillige and M. Abdul-Hay, Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7 (2017) e577–e577. [CrossRef] [Google Scholar]
  55. Z.J. Ward, J.M. Yeh, N. Bhakta, A.L. Frazier and R. Atun, Estimating the total incidence of global childhood cancer: a simulation-based analysis. Lancet Oncol. 20 (2019) 483–493. [CrossRef] [Google Scholar]
  56. E.G. Van Lochem, V.H.J. Van der Velden, H.K. Wind, J.G. Te Marvelde, N.A.C. Westerdaal and J.J.M. Van Dongen, Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B: Clin. Cytom. 60 (2004) 1–13. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.