Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 20
Number of page(s) 21
Section Population dynamics and epidemiology
Published online 18 August 2023
  1. M. Alfaro, H. Berestycki and G Raoul, The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition. SIAM J. Math. Anal. 49 (2017) 562–596. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Alfaro and R. Carles, Explicit solutions for replicator-mutator equations: extinction versus acceleration. SIAM J. Appl. Math. 74 (2014) 1919–1934. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Alfaro and R. Carles, Replicator-mutator equations with quadratic fitness. Proc. Am. Math. Soc. 145 (2017) 5315–5327. [CrossRef] [Google Scholar]
  4. D.G. Aronson and P. Besala, Parabolic equations with unbounded coefficients. J. Differ. Eq. 3 (1967) 1–14. [CrossRef] [Google Scholar]
  5. G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal. 16 (2009) 321–340. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Berestycki, O. Diekmann, C.J. Nagelkerke and P.A. Zegeling, Can a species keep pace with a shifting climate? Bull. Math. Biol. 71 (2009) 399–429. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. H. Berestycki and J. Fang, Forced waves of the fisher–kpp equation in a shifting environment. J. Differ. Eq. 264 (2018) 2157–2183. [CrossRef] [Google Scholar]
  8. H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed I -= the case of the whole space. Disc. Cont. Dyn. Syst. A 21 (2008) 41–67. [CrossRef] [Google Scholar]
  9. C. Carrere and G. Nadin, Influence of mutations in phenotypically-structured populations in time periodic environment. Disc. Cont. Dyn. Syst. B 25 (2020) 3609. [Google Scholar]
  10. J. Chabrowski, Sur la construction de la solution fondamentale de l’équation parabolique aux coefficients non bornés. Colloq. Math. 1 (1970) 141–148. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.M. Desai and D.S. Fisher, The balance between mutators and nonmutators in asexual populations. Genetics 188 (2011) 997–1014. [CrossRef] [PubMed] [Google Scholar]
  12. O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67 (2005) 257–271. [CrossRef] [Google Scholar]
  13. S. Figueroa Iglesias and S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time- periodic environments. SIAM J. Math. Anal. 50 (2018) 5537–5568. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Figueroa Iglesias and S. Mirrahimi, Selection and mutation in a shifting and fluctuating environment. arXiv preprint arXiv: 2103.07317, 2021. [Google Scholar]
  15. S. Gandon and S. Mirrahimi, A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations. Comptes Rendus Math. 355 (2017) 155–160. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.J. Gerrish, A. Colato, A.S Perelson and P.D. Sniegowski, Complete genetic linkage can subvert natural selection. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 6266–6271. [CrossRef] [PubMed] [Google Scholar]
  17. M.-E. Gil, F. Hamel, G. Martin and L. Roques, Mathematical properties of a class of integro-differential models from population genetics. SIAM J. Appl. Math. 77 (2017) 1536–1561. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.-E. Gil, F. Hamel, G. Martin and L. Roques, Dynamics of fitness distributions in the presence of a phenotypic optimum: an integro-differential approach. Nonlinearity, (2019) in press[CE1]. [Google Scholar]
  19. F. Hamel, F. Lavigne, G. Martin and L. Roques, Dynamics of adaptation in an anisotropic phenotype-fitness landscape. Nonlinear Anal. Real World Appl. 54 (2020) 103107. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Jansen, A. Coors, R. Stoks and L. De Meester, Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology 20 (2011) 543–551. [CrossRef] [PubMed] [Google Scholar]
  21. F. Lavigne, G. Martin, Y. Anciaux, J. Papaix and L. Roques, When sinks become sources: adaptive colonization in asexuals. Evolution 74 (2020) 29–42. [CrossRef] [PubMed] [Google Scholar]
  22. T. Lorenzi, R. Chisholm, L. Desvillettes and B. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 386 (2015) 166–176. [CrossRef] [Google Scholar]
  23. A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun. Part. Differ. Eq. 36 (2011) 1071–1098. [CrossRef] [Google Scholar]
  24. B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang and B Baradaran, The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 7 (2017) 339. [CrossRef] [PubMed] [Google Scholar]
  25. G. Martin and L. Roques, The non-stationary dynamics of fitness distributions: Asexual model with epistasis and standing variation. Genetics 204 (2016) 1541–1558. [CrossRef] [PubMed] [Google Scholar]
  26. B. Perthame and G. Barles, Dirac concentrations in Lotka–Volterra parabolic PDEs. Indiana Univ. Math. J. (2008) 3275–3301. [CrossRef] [MathSciNet] [Google Scholar]
  27. L. Roques, F. Patout, O. Bonnefon and G. Martin, Adaptation in general temporally changing environments. SIAM J. Appl. Math. (2020). [Google Scholar]
  28. P.D. Sniegowski and P.J. Gerrish, Beneficial mutations and the dynamics of adaptation in asexual populations. Philos. Trans.Royal Soc. B: Biol. Sci. 365 (2010) 1255–1263. [CrossRef] [PubMed] [Google Scholar]
  29. E.V. Sokurenko, R. Gomulkiewicz and D.E. Dykhuizen, Source-sink dynamics of virulence evolution. Nat. Rev. Microbiol. 4 (2006) 548. [CrossRef] [PubMed] [Google Scholar]
  30. O. Tenaillon, The utility of Fisher’s geometric model in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 45 (2014) 179–201. [CrossRef] [PubMed] [Google Scholar]
  31. L.S. Tsimring H. Levine and D.A. Kessler, RNA virus evolution via a fitness-space model. Phys. Rev. Lett. 76 (1996) 4440–4443. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.