Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 19
Number of page(s) 20
Section Engineering
Published online 14 August 2023
  1. O.A. Abegunrin and I. Lare Animasaun, Motion of Williamson fluid over an upper horizontal surface of a paraboloid of revolution due to partial slip and buoyancy: boundary layer analysis, in Defect and Diffusion Forum. Vol. 378. Trans Tech Publications Ltd (2017). [Google Scholar]
  2. C.H. Amanulla, N. Nagendra, R.A. Subba, O.A. Bég and A. Kadir, Numerical exploration of thermal radiation and Biot number effects on the flow of a non-Newtonian MHD Williamson fluid over a vertical convective surface. Heat Transfer—Asian Res. 47 (2018) 286–304. [CrossRef] [Google Scholar]
  3. N. Ahamad, N. Ameer, S. Kamangar and I. Anjum Badruddin, The influence of curvature wall on the blood flow in stenosed artery: a computational study. Bio-med. Mater. Eng. 29 (2018) 319–332. [CrossRef] [Google Scholar]
  4. R.D. Alsemiry, P.K. Mandal, H.M. Sayed and N. Amin, Numerical solution of blood flow and mass transport in an elastic tube with multiple stenoses. BioMed. Res. Int. bf 2020 (2020). [Google Scholar]
  5. N. Ali, A. Zaman, M. Sajid and J.J. Nieto, Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel. Math. Biosci. 269 (2015) 94–103. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Azuma and T. Fukushima, Flow patterns in stenotic blood vessel models. Biorheology 13 (1976) 337–355. [CrossRef] [PubMed] [Google Scholar]
  7. L.H. Back, J.R. Radbill and D.W. Crawford, Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. J. Biomech. 10 (1977) 763–774. [CrossRef] [Google Scholar]
  8. S. Chakravarty and S. Sen, Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries. Korea-Australia Rheol. J. 17 (2005) 47–62. [Google Scholar]
  9. C.G. Caro, J.M. Fitz-Gerald and R.C. Schroter, Atheroma and arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 177 (1971) 109–133. [Google Scholar]
  10. J.C.F. Chow and K. Soda, Laminar flow and blood oxygenation in channels with boundary irregularities. J. Appl. Mech. 40 (1973) 843–850. [CrossRef] [Google Scholar]
  11. R.L. Feldman, W.W. Nichols, C.J. Pepine and C.R. Conti, Hemodynamic effects of long and multiple coronary arterial narrowings. Chest 74 (1978) 280–285. [CrossRef] [PubMed] [Google Scholar]
  12. R.L. Feldman, W.W. Nichols, C.J. Pepine, D.A. Conetta and C.R. Conti, The coronary hemodynamics of left main and branch coronary stenoses: the effects of reduction in stenosis diameter, stenosis length, and number of stenoses. J. Thorac. Cardiovasc. Surg. 77 (1979) 377–388. [CrossRef] [Google Scholar]
  13. J.H. Forrester and D.F. Young, Flow through a converging-diverging tube and its implications in occlusive vascular disease—I: Theoretical development. J. Biomech. 3 (1970) 297–305. [CrossRef] [Google Scholar]
  14. Z. Ismail, I. Abdullah, N. Mutapha and N. Amin, A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 195 (2008) 669–680. [MathSciNet] [Google Scholar]
  15. W. Ibrahim and M. Negera, The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy. Adv. Math. Phys. 2020 (2020). [Google Scholar]
  16. W. Iqbal, M.N. Naeem and M. Jalil, Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder. AIP Adv. 9 (2019) 055118. [CrossRef] [Google Scholar]
  17. P.E. Karayannacos, N. Talukder, R.M. Nerem, S. Roshan and J.S. Vasko, The role of multiple noncritical arterial stenoses in the pathogenesis of ischemia. J. Thorac. Cardiovasc. Surg. 73 (1977) 458–469. [CrossRef] [Google Scholar]
  18. T. Kebede, E. Haile, G. Awgichew and T. Walelign, Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids. J. Appl. Math. 2020 (2020). [CrossRef] [Google Scholar]
  19. K.A. Kumar, J.R. Reddy, V. Sugunamma and N. Sandeep, Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink. Heat Transfer Res. 50 (2019). [Google Scholar]
  20. D. Kilpatrick, S.D. Webber and J.P. Colle, The vascular resistance of arterial stenoses in series. Angiology 41 (1990) 278–285. [CrossRef] [PubMed] [Google Scholar]
  21. P.K. Mandal, An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Non-linear Mech. 40 (2005) 151–164. [CrossRef] [Google Scholar]
  22. D.A. MacDonald, On steady flow through modelled vascular stenoses. J. Biomech. 12 (1979) 13–20. [CrossRef] [Google Scholar]
  23. J.C. Misra, A. Sinha and G.C. Shit, Mathematical modeling of blood flow in a porous vessel having double stenoses in the presence of an external magnetic field. Int. J. Biomathe. 4 (2011) 207–225. [CrossRef] [Google Scholar]
  24. N. Mustapha, S. Chakravarty, P.K. Mandal and N. Amin, Unsteady response of blood flow through a couple of irregular arterial constrictions to body acceleration. J. Mech. Med. Biol. 8 (2008) 395–420. [CrossRef] [Google Scholar]
  25. N. Mustapha, P.K. Mandal, I. Abdullah, N. NAmin and T. Hayat, Numerical simulation of generalized newtonian blood flow past a couple of irregular arterial stenoses. Numer. Methods Part. Diff. Eq. 27 (2011) 960–981. [CrossRef] [Google Scholar]
  26. S. Nadeem, S. Ashiq and M. Ali, Williamson fluid model for the peristaltic flow of chyme in small intestine. Math. Probl. Eng. 2012 (2012). [Google Scholar]
  27. P. Nagarani and G. Sarojamma, Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery. Korea-Australia Rheol. J. 20 (2008) 189–196. [Google Scholar]
  28. P. Owasit and S. Sriyab, Mathematical modeling of non-Newtonian fluid in arterial blood flow through various stenoses. Adv. Diff. Eq. 2021 (2021) 1–20. [CrossRef] [Google Scholar]
  29. A. Ogulu and T.M. Abbey, Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int. Commun. Heat Mass Transfer 32 (2005) 983–989. [CrossRef] [Google Scholar]
  30. K. Perktold R. Peter and M. Resch, Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26 (1989) 1011–1030. [CrossRef] [PubMed] [Google Scholar]
  31. M.G. Rabby, S.P. Shupti and Md. Molla, Pulsatile non-newtonian laminar blood flows through arterial double stenoses. J. Fluids 2014 (2014). [CrossRef] [Google Scholar]
  32. D.S. Sankar and U. Lee, Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries. Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 2971–2981. [CrossRef] [Google Scholar]
  33. A. Shafiq, A.B. Colak, T.N. Sindhu, Q.M. Al-Mdallal and T. Abdeljawad, Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling. Sci. Rep. 11 (2021) 1–21. [NASA ADS] [CrossRef] [Google Scholar]
  34. H. Shahzad, X. Wang, I. Sarris, K. Iqbal, M.B. Hafeez and M. Krawczuk, Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls. Sci. Rep. 11 (2021) 1–13. [NASA ADS] [CrossRef] [Google Scholar]
  35. K. Subbarayudu, S. Suneetha and P. Bala Anki Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge. Propuls. Power Res. 9 (2020) 87–99. [CrossRef] [Google Scholar]
  36. N. Talukder, P.E. Karayanncos, R.M. Nerem and J.S. Vasko, An experimental study of the fluid dynamics of multiple noncritical stenoses. J. Biomech. Eng. 99 (1977) 74–82. [CrossRef] [Google Scholar]
  37. K. Vajravelu, S. Sreenandh, K. Rajanikanth and C. Lee, Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. Nonlinear Anal. Real World Appl. 13 (2012) 2804–2822. [CrossRef] [MathSciNet] [Google Scholar]
  38. S.A. Victor and V.L. Shah, Heat transfer to blood flowing in a tube. Biorheology 12 (1975) 361–368. [CrossRef] [PubMed] [Google Scholar]
  39. S.A. Victor and V.L. Shah, Steady state heat transfer to blood flowing in the entrance region of a tube. Int. J. Heat Mass Transfer 19 (1976) 777–783. [CrossRef] [Google Scholar]
  40. V.K. Verma and P. Saraswat, Effect of a multiple stenosis on blood flow through a tube. Int. J. Biomed. Biol. Eng. 7 (2014) 753–756. [Google Scholar]
  41. R.Vo. Williamson, The flow of pseudoplastic materials. Ind. Eng. Chem. 21 (1929) 1108–1111. [CrossRef] [Google Scholar]
  42. D.F. Young, Effect of a time-dependent stenosis on flow through a tube. J. Eng. Ind. 90 (1968) 248–254. [CrossRef] [Google Scholar]
  43. W. Yoncheareon and D. Young, Initiation of turbulence in models of arterial stenosis. J. Biomech. 12 (1979) 185–196. [CrossRef] [Google Scholar]
  44. A. Zaman, N. Ali and M. Sajid, Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery. AIP Adv. 6 (2016) 015118. [CrossRef] [Google Scholar]
  45. A. Zaman, N. Ali, O.A. Bég and M. Sajid, Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. Int. J. Heat Mass Transfer 95 (2016) 1084–1095. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.