Open Access
Issue
Math. Model. Nat. Phenom.
Volume 19, 2024
Article Number 12
Number of page(s) 36
Section Mathematical physiology and medicine
DOI https://doi.org/10.1051/mmnp/2024010
Published online 18 June 2024
  1. S.K. Lai, Y.Y. Wang, D. Wirtz and J. Hanes. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61 (2009) 86–100. [CrossRef] [Google Scholar]
  2. M.R. Knowles and R.C. Boucher, Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest. 109 (2002) 571–577. [CrossRef] [PubMed] [Google Scholar]
  3. P.J. Basser, T.A. Mcmahon and P. Griffith, The mechanism of mucus clearance in cough. Trans. ASME, J. Biomech. Eng. 111 (1989) 288–297. [CrossRef] [PubMed] [Google Scholar]
  4. A.M. Lucas and L.C. Douglas, Principles underlying ciliary activity in the respiratory tract: II. A comparison of nasal clearance in man, monkey and other mammals. Arch. Otolaryngol. 20 (1934) 518–541. [CrossRef] [Google Scholar]
  5. I.R. Gibbons, Cilia and flagella of eukaryotes. J. Cell. Biol. 91 (1981) 107–124. [Google Scholar]
  6. D.R. Mitchell, The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles. Eukaryotic Membranes and Cytoskeleton: Origins and Evolution. Advances in Experimental Medicine and Biology, Vol. 607. Springer New York (2007) 130–140, chapter 11. [CrossRef] [PubMed] [Google Scholar]
  7. N. Mizuno, M. Taschner, B.D. Engel and E. Lorentzen, Structural studies of ciliary components. J. Mol. Biol. 422 (2012) 163–180. [CrossRef] [Google Scholar]
  8. B. Prevon, J.M. Scholey and E.J.G. Peterman, Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J. 284 (2017) 2905–2931. [CrossRef] [PubMed] [Google Scholar]
  9. E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45 (1977) 3–11. [Google Scholar]
  10. M.J. Sanderson and E.R. Dirksen, A versatile and quantitative computer-assisted photoelectronic technique used for the analysis of ciliary beat cycles. Cell Motil. 5 (1985) 267–292. [CrossRef] [PubMed] [Google Scholar]
  11. D.R. Brumley, K.Y. Wan, M. Polin and R.E. Goldstein, Flagellar synchronization through direct hydrodynamic interactions. eLife 3 (2014) e02750. [CrossRef] [PubMed] [Google Scholar]
  12. S. Enault, D. Lombardi, P. Poncet and M. Thiriet, Mucus dynamics subject to air and wall motion. ESAIM: Proc. 30 (2010) 125–141. [Google Scholar]
  13. S. Mitran, Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment. J. Comput. Phys. 244 (2013) 193–211. [CrossRef] [MathSciNet] [Google Scholar]
  14. B. Mauroy, C. Fausser, D. Pelca, J. Merckx and P. Flaud, Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree. Phys. Biol. 8 (2011) 056006, 12. [CrossRef] [Google Scholar]
  15. D.J. Smith, E.A. Gaffney and J.R. Blake, A viscoelastic traction layer model of muco-ciliary transport. Bull. Math. Biol. 69 (2007) 289–327. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. P. Kurbatova, N. Bessonov, V. Volpert, H.A.W.M. Tiddens, C. Cornu, P. Nony and D. Caudri, Model of mucociliary clearance in cystic fibrosis lungs. J. Theor. Biol. 372 (2015) 81–88. [CrossRef] [Google Scholar]
  17. A. Choudhury, M. Filoche, N.M. Ribe, N. Grenier and G.F. Dietze, On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach. J. Fluid Mech. 971 (2023) A33. [CrossRef] [Google Scholar]
  18. M. Bottier, M. Peña Fernández, G. Pelle, D. Isabey, B. Louis, J.B. Grotberg and M. Filoche, A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling. PLOS Comput. Biol. 13 (2017) 1–21. [Google Scholar]
  19. A. Decoene, S. Martin and F. Vergnet, A continuum active structure model for the interaction of cilia with a viscous fluid. Z. Angew. Math. Mech. (2023) e202100534 [CrossRef] [Google Scholar]
  20. R.H. Dillon, L.J. Fauci, C. Omoto and X. Yang, Fluid dynamic models of flagellar and ciliary beating. Ann. N. Y. Acad. Sci. 1101 (2007) 494–505. [CrossRef] [PubMed] [Google Scholar]
  21. S. Gueron and K. Levit-Gurevich, A three-dimensional model for ciliary motion based on the internal 9 + 2 structure. Proc. Biol. Sci. 268 (2001) 599–607. [CrossRef] [PubMed] [Google Scholar]
  22. S. Gueron and N. Liron, Ciliary motion modeling, and dynamic multicilia interactions. Biophys. J. 63 (1992) 1045–1058. [CrossRef] [Google Scholar]
  23. S. Gueron and N. Liron, Simulations of three-dimensional ciliary beats and cilia interactions. Biophys. J. 65 (1993) 499–507. [CrossRef] [Google Scholar]
  24. M.H. Sedaghat, M.M. Shahmardan, M. Norouzi and M. Heydari, Effect of cilia beat frequency on muco-ciliary clearance. J. Biomed. Phys. Eng. 6 (2016) 265–278. [Google Scholar]
  25. M.H. Sedaghat, S. Sadrizadeh and O. Abouali, Three-dimensional simulation of mucociliary clearance under the ciliary abnormalities. J. Non-Newton. Fluid Mech. 316 (2023) 105029. [CrossRef] [Google Scholar]
  26. S. Mitran, Metachronal wave formation in a model of pulmonary cilia. Comput. Struct. 85 (2007) 763–774. [CrossRef] [Google Scholar]
  27. D. Oriola, H. Gadêlha and J. Casademunt, Nonlinear amplitude dynamics in flagellar beating. R. Soc. Open Sci. 4 (2017) 160698. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Man, F. Ling and E. Kanso, Cilia oscillations. Philos. Trans. R. Soc. B 375 (2019) 20190157. [Google Scholar]
  29. B. Chakrabarti and D. Saintillan, Hydrodynamic synchronization of spontaneously beating filaments. Phys. Rev. Lett. 123 (2019) 208101. [CrossRef] [PubMed] [Google Scholar]
  30. B. Chakrabarti, S. Fürthauer and M.J. Shelley, A multiscale biophysical model gives quantized metachronal waves in a lattice of beating cilia. Proc. Natl. Acad. Sci. U.S.A. 119 (2022) e2113539119. [CrossRef] [PubMed] [Google Scholar]
  31. R.G. Cox, The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44 (1970) 791–810. [CrossRef] [Google Scholar]
  32. Y. Mori, L. Ohm and D. Spirn, Theoretical justification and error analysis for slender body theory. Commun. Pure Appl. Math. 73 (2020) 1245–1314. [CrossRef] [Google Scholar]
  33. N. Liron and S. Mochon, The discrete-cilia approach to propulsion of ciliated micro-organisms. J. Fluid Mech. 75 (1976) 593–607. [CrossRef] [MathSciNet] [Google Scholar]
  34. G.R. Fulford and J.R. Blake, Force distribution along a slender body straddling an interface. J. Austral. Math. Soc. Ser. B 27 (1986) 295–315. [CrossRef] [MathSciNet] [Google Scholar]
  35. D.J. Smith, E.A. Gaffney and J.R. Blake, Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull. Math. Biol. 69 (2007) 1477–1510. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. W.L. Lee, P.G. Jayathilake, Z. Tan, D.V. Le, H.P. Lee and B.C. Khoo, Muco-ciliary transport: effect of mucus viscosity, cilia beat frequency and cilia density. Comput. Fluids 49 (2011) 214–221. [CrossRef] [MathSciNet] [Google Scholar]
  37. S. Chateau, J. Favier, U. D’Ortona and S. Poncet, Transport efficiency of metachronal waves in 3D cilium arrays immersed in a two-phase flow. J. Fluid Mech. 824 (2017) 931–961. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Chatelin, Methodes numériques pour l’écoulement de Stokes 3D: fluides à viscosité variable en géométrie complexe mobile; application aux fluides biologiques. Thèse de doctorat de l’université Paul Sabatier (2013) 197. [Google Scholar]
  39. O.K. Matar and P.D.M. Spelt, Dynamics of thin free films with reaction-driven density and viscosity variations. Phys. Fluids 17 (2005) 122102. [CrossRef] [MathSciNet] [Google Scholar]
  40. S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error analysis for the Stokes equations with a punctual source term. Numer. Math. 140 (2018) 677–701. [Google Scholar]
  41. L. Lacouture, Modélisation et simulation du mouvement de structures fines dans un fluide visqueux : application au transport mucociliaire. Thèse de doctorat de l’université Paris-Sud (2016). [Google Scholar]
  42. G.R. Fulford and J.R. Blake, Muco-ciliary transport in the lung. J. Theor. Biol. 121 (1986) 381–402. [CrossRef] [Google Scholar]
  43. M.J. Sanderson and M.A. Sleigh, Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J. Cell Sci. 47 (1981) 331–347. [PubMed] [Google Scholar]
  44. L. Gheber, A. Korngreen and Z. Priel, Effect of viscosity on metachrony in mucus propelling cilia. Cell Motil. Cytoskel. 39 (1998) 9–20. [CrossRef] [PubMed] [Google Scholar]
  45. T.L. Hayden, Representation theorems in reflexive Banach spaces. Math. Z. 104 (1968) 405–406. [CrossRef] [MathSciNet] [Google Scholar]
  46. C.G. Simader, On Dirichlet’s Boundary value Problem. An Lp-theory based on a generalization of Garding’s inequality. Vol. 268 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York (1972). [Google Scholar]
  47. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  48. W.M. Foster, E. Langenback and E.H. Bergofsky, Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance. J. Appl. Physiol. 48 (1980) 965–971. [CrossRef] [Google Scholar]
  49. E. Kilgour, N. Rankin, S. Ryan and P. Rodger, Mucociliary function deteriorates in the clinical range of inspired air temperature and humidity. Intensive Care Med. 30 (2004) 1491–1494. [CrossRef] [PubMed] [Google Scholar]
  50. D.B. Yeates, N. Aspin, H. Levison, M.T. Jones and A.C. Bryan, Mucociliary tracheal transport rates in man. J. Appl. Physiol. 39 (1975) 487–495. [CrossRef] [Google Scholar]
  51. R. Trawoger, T. Kolobow, M. Cereda and M.E. Sparacino, Tracheal mucus velocity remains normal in healthy sheep intubated with a new endotracheal tube with a novel laryngeal seal. Anesthesiology 86 (1997) 1140–1144. [CrossRef] [PubMed] [Google Scholar]
  52. L. Morgan, M. Pearson, R. de Iongh, D. Mackey, H. van der Wall, M. Peters and J. Rutland, Scintigraphic measurement of tracheal mucus velocity in vivo. Eur. Respir. J. 23 (2004) 518–522. [CrossRef] [PubMed] [Google Scholar]
  53. A. Decoene, S. Martin and B. Maury, Direct simulation of rigid particles in a viscoelastic fluid. J. Non-Newton. Fluid Mech. 260 (2018) 1–25. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.