Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 19, 2024
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 45 | |
Section | Population dynamics and epidemiology | |
DOI | https://doi.org/10.1051/mmnp/2024008 | |
Published online | 18 June 2024 |
- H. Shu, Z. Ma, X.S. Wang and L. Wang, Viral diffusion and cell-to-cell transmission: mathematical analysis and simulation study. J. Math. Pures Appl. 137 (2020) 290–313. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, J. Yang and T. Kuniya, Dynamics of a PDE viral infection model incorporating cell-to-cell transmission. J. Math. Anal. Appl. 444 (2016) 1542–1564. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang, W. Wu and T. Kuniya, Global threshold analysis on a diffusive host–pathogen model with hyperinfectivity and nonlinear incidence functions. Math. Comput. Simul. 203 (2023) 767–802. [CrossRef] [Google Scholar]
- J. Wang and X. Wu, Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates. J. Dynam. Diff. Equat. (2021) 1–37. [Google Scholar]
- F.B. Wang, J. Shi and X. Zou, Dynamics of a host–pathogen system on a bounded spatial domain. Commun. Pure Appl. Anal. 14 (2015) 2535. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bentout, Analysis of global behavior in an age-structured epidemic model with nonlocal dispersal and distributed delay. Math. Meth. Appl. Sci. (2024) 1–24. [Google Scholar]
- F. Mahroug and S. Bentout, Dynamics of a diffusion dispersal viral epidemic modelwith age infection in a spatially heterogeneous environment with general nonlinear function. Math. Meth. Appl. Sci. 46 (2023) 14983–15010. [CrossRef] [Google Scholar]
- R.D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. Fixed Point Theory. Springer, Berlin, Heidelberg (1981) 309–330. [CrossRef] [Google Scholar]
- K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1988). [Google Scholar]
- F.B. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model. Applic. Anal. 93 (2014) 2312–2329. [CrossRef] [Google Scholar]
- Y. Wu and X. Zou, Dynamics and profiles of a diffusive host–pathogen system with distinct dispersal rates. J. Diff. Equat. 264 (2018) 4989–5024. [CrossRef] [Google Scholar]
- J.K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographsvol, Vol. 25. American Mathematical Society, Providence, RI (1988). [Google Scholar]
- X.Q. Zhao, Dynamical Systems in Population Biology, Vol. 16. Springer, New York (2017). [CrossRef] [Google Scholar]
- S. Djilali, Threshold asymptotic dynamics for a spatial age-dependent cell-to-cell transmission model with nonlocal disperse. Discrete Continuous Dyn. Syst. Ser. B 28 (2023). [Google Scholar]
- N. Mouhcine, Y. Sabbar and Z. Anwar, Stability characterization of a fractional-order viral system with the non- cytolytic immune assumption. Math. Model. Numer. Simul. Applic. 2 (2022) 164–176. [Google Scholar]
- M. Naim, Z. Yaagoub, A. Zeb, M. Sadki and A. Karam, Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity. Model. Earth Syst. Environ. 10 (2023) 1749–1769. [Google Scholar]
- S. Djilali, S. Bentout and A. Zeb, Dynamics of a diffusive delayed viral infection model in a heterogeneous environment. Math. Methods Appl. Sci. 46 (2023) 16596–16624. [CrossRef] [MathSciNet] [Google Scholar]
- H. Yang and J. Wei, Dynamics of spatially heterogeneous viral model with time delay. Commun. Pure Appl. Anal. 19 (2020) 85. [CrossRef] [MathSciNet] [Google Scholar]
- L.J.S. Allen, B.M. Bolker, Y. Lou and A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. 21 (2008) 1–20. [Google Scholar]
- Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Diff. Equat. 261 (2016) 4424–4447. [CrossRef] [Google Scholar]
- G.F. Webb, Theory of Nonlinear Age-dependent Population Dynamics. CRC Press (1985). [Google Scholar]
- H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society. Providence (1995). [Google Scholar]
- W. Wang and X. Zhao, Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11 (2012) 1652–1673. [CrossRef] [MathSciNet] [Google Scholar]
- N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. (1983). [Google Scholar]
- H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70 (2009) 188–211. [CrossRef] [MathSciNet] [Google Scholar]
- W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators. Acta Appl. Math. 2 (1984) 297–309. [CrossRef] [MathSciNet] [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983). [CrossRef] [Google Scholar]
- W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Math. 1223, edited by A. Favini and E. Obrecht. Springer-Verlag, Berlin, Heidelberg (1986) 61–67. [Google Scholar]
- R. Cui, K.Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Diff. Equat. 263 (2017) 2343–2373. [CrossRef] [MathSciNet] [Google Scholar]
- P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37 (2005) 251–275. [CrossRef] [MathSciNet] [Google Scholar]
- H. Smith and X.Q. Zhao, Robust persistence for semidynamical systems. Nonlin. Anal. Theo. Meth. Appl. 47 (2001) 6169–6179. [CrossRef] [Google Scholar]
- L. Liu, R. Xu and Z. Jin, Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion. Appl. Math. Model. 82 (2020) 150–167. [CrossRef] [MathSciNet] [Google Scholar]
- A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68 (2006) 615–626. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- B. Soufiane and T.M. Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434 (2016) 1211–1239. [CrossRef] [MathSciNet] [Google Scholar]
- D. Henry, Geometric theory of Semilinear Parabolic Equations, Vol. 840. Springer (2006). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.