Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 19, 2024
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 20 | |
Section | Economics | |
DOI | https://doi.org/10.1051/mmnp/2024009 | |
Published online | 18 June 2024 |
- N. Xi, N. Ding and Y. Wang, How required reserve ratio affects distribution and velocity of money. Physica A 357 (2005) 543–555. [CrossRef] [Google Scholar]
- V.M. Yakovenko and J.J. Barkley Rosser, Colloquium: statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 81 (2009) 1703–1725. [CrossRef] [Google Scholar]
- A.A. Dragulescu and V.M. Yakovenko, Statistical mechanics of money. Eur. Phys. J. B 17 (2000) 723–729. [CrossRef] [Google Scholar]
- E. Heinsalu and M. Patriarca, Kinetic models of immediate exchange. Eur. Phys. J. B 87 (2014) 170–179. [CrossRef] [Google Scholar]
- G. Katriel, The immediate exchange model: an analytical investigation. Eur. Phys. J. B 88 (2015) 19–24. [CrossRef] [Google Scholar]
- A. Chakraborti and B.K. Chakrabarti, Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17 (2000) 167–170. [CrossRef] [Google Scholar]
- M. Patriarca, A. Chakraborti and K. Kaski, Statistical model with standard Γ distribution. Phys. Rev. E 70 (2004) 016104. [CrossRef] [PubMed] [Google Scholar]
- N. Lanchier, Rigorous proof of the Boltzmann–Gibbs distribution of money on connected graphs. J. Stat. Phys. 167 (2017) 160–172. [CrossRef] [MathSciNet] [Google Scholar]
- N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs. J. Stat. Phys. 171 (2018) 727–743. [CrossRef] [MathSciNet] [Google Scholar]
- N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs (models with debts). J. Stat. Phys. 176 (2019) 1115–1137. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao and P.-E. Jabin, From interacting agents to Boltzmann–Gibbs distribution of money. (2022). Available as arXiv:2208.05629. [Google Scholar]
- F. Cao, P.-E. Jabin and S. Motsch, Entropy dissipation and propagation of chaos for the uniform reshuffling model. Math. Models Methods Appl. Sci. 33 (2023) 829–875. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao and S. Motsch, Derivation of wealth distributions from biased exchange of money. Kinet. Relat. Models 16 (2023) 764–794. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao and S. Motsch, Uncovering a two-phase dynamics from a dollar exchange model with bank and debt. SIAM J. Appl. Math. 83 (2023) 1872–1891. [CrossRef] [MathSciNet] [Google Scholar]
- D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130 (2008) 1087–1117. [CrossRef] [MathSciNet] [Google Scholar]
- F. Spitzer, Interaction of Markov processes. Adv. Math. 5 (1970) 246–290. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.