Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 41 | |
Section | Mathematical physiology and medicine | |
DOI | https://doi.org/10.1051/mmnp/2024022 | |
Published online | 20 January 2025 |
- L.S. Weinstein, A. Shenker, P.V. Gejman, M.J. Merino, E. Friedman and A.M. Spiegel, Activating mutations of the stimulatory g protein in the Mccune–Albright syndrome. N. Engl. J. Med. 325 (1991) 1688–1695. PMID: 1944469. [CrossRef] [PubMed] [Google Scholar]
- J.Y. Wu, P. Aarnisalo, M. Bastepe, P. Sinha, K. Fulzele, M.K. Selig, M. Chen, I.J. Poulton, L.E. Purton, N.A. Sims, L.S. Weinstein and H.M. Kronenberg, Gas enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J. Clin. Invest. 121 (2011) 3492–3504. [CrossRef] [PubMed] [Google Scholar]
- M. Riminucci, B. Liu, A. Corsi, A. Shenker, A.M. Spiegel, P.G. Robey and P. Bianco, The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gαs gene: site-specific patterns and recurrent histological hallmarks. J. Pathol. 187 (1999) 249–258. [CrossRef] [PubMed] [Google Scholar]
- S. Piersanti, C. Remoli, I. Saggio, A. Funari, S. Michienzi, B. Sacchetti, P.G. Robey, M. Riminucci and P. Bianco, Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. J. Bone Miner. Res. 25 (2010) 1103–1116. [CrossRef] [PubMed] [Google Scholar]
- P. Bianco, S.A. Kuznetsov, M. Riminucci, L.W. Fisher, A.M. Spiegel and P.G. Robey, Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and gsalpha-mutated skeletal progenitor cells. J. Clin. Invest. 101 (1998) 1737–1744. [CrossRef] [PubMed] [Google Scholar]
- I. Hartley, M. Zhadina, M.T. Collins and A.M. Boyce, Fibrous dysplasia of bone and Mccune–Albright syndrome: a bench to bedside review. Calcif. Tissue Int. 104 (2019) 517–529. [CrossRef] [PubMed] [Google Scholar]
- A.M. Boyce and M.T. Collins, Fibrous dysplasia/McCune–Albright syndrome: a rare, mosaic disease of Gαs activation. Endocr. Rev. 41 (2019) 345–370. [Google Scholar]
- I.R. Reid and E.O. Billington, Drug therapy for osteoporosis in older Adults. Lancet 399 (2022) 1080–1092. [CrossRef] [PubMed] [Google Scholar]
- A.M. Boyce, W.H. Chong, J. Yao, R.I. Gafni, M.H. Kelly, C.E. Chamberlain, C. Bassim, N. Cherman, M. Ellsworth, J.Z. Kasa-Vubu, F.A. Farley, A.A. Molinolo, N. Bhattacharyya and M.T. Collins, Denosumab treatment for fibrous dysplasia. J. Bone Miner. Res. 27 (2012) 1462–1470. [CrossRef] [PubMed] [Google Scholar]
- S. Ferrari and B. Langdahl, Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone. Nat. Rev. Rheumatol. 19 (2023) 307–317. [CrossRef] [PubMed] [Google Scholar]
- R.E. Coleman, P.I. Croucher, A.R. Padhani, P. Clézardin, E. Chow, M. Fallon, T. Guise, S. Colangeli, R. Capanna and L. Costa, Bone Metastases. Nat. Rev. Dis. Primers 6 (2020) 83. [CrossRef] [Google Scholar]
- L. Corral Gudino, Paget’s disease of bone: 1877–2023. Etiology, and management of a disease on epidemiologic transition. Med. Clín. (Engl. Ed.) 161 (2023) 207–216. [Google Scholar]
- D. Huang, C. Zhao, R. Li, B. Chen, Y. Zhang, Z. Sun, J. Wei, H. Zhou, Q. Gu and J. Xu, Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble rank–RANKL interactions and treat osteoporosis. Nat. Commun. 13 (2022) 5338. [CrossRef] [Google Scholar]
- J.B. Regard, N. Cherman, D. Palmer, S.A. Kuznetsov, F.S. Celi, J.-M. Guettier, M. Chen, N. Bhattacharyya, J. Wess, S.R. Coughlin, L.S. Weinstein, M.T. Collins, P.G. Robey and Y. Yang, Wnt/β-catenin signaling is differentially regulated by gα proteins and contributes to fibrous dysplasia. Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 20101–20106. [CrossRef] [PubMed] [Google Scholar]
- N. Bhattacharyya, M. Wiench, C. Dumitrescu, B.M. Connolly, T.H. Bugge, H.V. Patel, R.I. Gafni, N. Cherman, M. Cho, G.L. Hager and M.T. Collins, Mechanism of fgf23 processing in fibrous dysplasia. J. Bone Miner. Res. 27 (2012) 1132–1141. [CrossRef] [PubMed] [Google Scholar]
- C. Hopkins, L.F. de Castro, A. Corsi, A. Boyce, M.T. Collins, M. Riminucci and A.-M. Heegaard, Fibrous dysplasia animal models: a systematic review. Bone 155 (2022) 116270. [CrossRef] [PubMed] [Google Scholar]
- J.M. Whitlock, L.F. de Castro, M.T. Collins, L.V. Chernomordik and A.M. Boyce, An inducible explant model of osteoclast–osteoprogenitor coordination in exacerbated osteoclastogenesis. iScience 26 (2023) 1064703. [CrossRef] [PubMed] [Google Scholar]
- L.F. De Castro, A.B. Burke, H.D. Wang, J. Tsai, P. Florenzano, K.S. Pan, N. Bhattacharyya, A.M. Boyce, R.I. Gafni, A.A. Molinolo, P.G. Robey and M.T. Collins, Activation of RANK/RANKL/OPG pathway is involved in the pathophysiology of fibrous dysplasia and associated with disease burden. J. Bone Miner. Res. 34 (2019) 290–294. [CrossRef] [PubMed] [Google Scholar]
- P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T. John Martin and G.R. Mundy, Model structure and control of bone remodeling: a theoretical study. Bone 43 (2008) 249–263. [CrossRef] [PubMed] [Google Scholar]
- I. Ait Oumghar, A. Barkaoui and P. Chabrand, Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review. Front. Bioeng. Biotechnol. 8 (2020). [CrossRef] [Google Scholar]
- S. Trichilo and P. Pivonka, Application of Disease System Analysis to Osteoporosis: From Temporal to Spatio-Temporal Assessment of Disease Progression and Intervention. Springer International Publishing, Cham (2018) 61–121. [Google Scholar]
- J.L. Calvo-Gallego, P. Pivonka, R. Ruiz-Lozano and J. Martínez-Reina, Mechanistic PK–PD model of alendronate treatment of postmenopausal osteoporosis predicts bone site-specific response. Front. Bioeng. Biotechnol. 10 (2022) 940620. [CrossRef] [Google Scholar]
- X. Zhao, P. Deng, R. Iglesias-Bartolome, P. Amornphimoltham, D.J. Steffen, Y. Jin, A.A. Molinolo, L.F. De Castro, D. Ovejero, Q. Yuan, Q. Chen, X. Han, D. Bai, S.S. Taylor, Y. Yang, M.T. Collins and J.S. Gutkind, Expression of an active Gαs mutant in skeletal stem cells is sufficient and necessary for fibrous dysplasia initiation and maintenance. Proc. Natl. Acad. Sci. U.S.A. 115 (2018) E428–E437. [Google Scholar]
- B. Palmisano, R. Labella, S. Donsante, C. Remoli, E. Spica, I. Coletta, G. Farinacci, M. Dello Spedale Venti, I. Saggio, M. Serafini, P.G. Robey, A. Corsi and M. Riminucci, Gsαr201c and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res. 10 (2022) 50. [CrossRef] [Google Scholar]
- X. Chen, X. Zhi, J. Wang and J. Su, Rankl signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 6 (2018) 34. [CrossRef] [Google Scholar]
- Y. Ikebuchi, S. Aoki, M. Honma, M. Hayashi, Y. Sugamori, M. Khan, Y. Kariya, G. Kato, Y. Tabata, J.M. Penninger, N. Udagawa, K. Aoki and H. Suzuki, Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561 (2018) 195–200. [CrossRef] [PubMed] [Google Scholar]
- A. Salhotra, H.N. Shah, B. Levi and M.T. Longaker, Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21 (2020) 696–711. [CrossRef] [PubMed] [Google Scholar]
- W. Sohn, M.A. Simiens, K. Jaeger, S. Hutton and G. Jang, The pharmacokinetics and pharmacodynamics of deno- sumab in patients with advanced solid tumours and bone metastases: a systematic review. Br. J. Clin. Pharmacol. 78 (2014) 477–487. [CrossRef] [PubMed] [Google Scholar]
- L. Wang, X. You, L. Zhang, C. Zhang and W. Zou, Mechanical regulation of bone remodelling. Bone Res. 10 (2022) 16. [CrossRef] [Google Scholar]
- A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller and J. Timmer, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25 (2009) 1923–1929. [CrossRef] [PubMed] [Google Scholar]
- P.J. Marie, C. de Pollak, P. Chanson and A. Lomri, Increased proliferation of osteoblastic cells expressing the activating GS alpha mutation in monostotic and polyostotic fibrous dysplasia. Am. J. Pathol. 150 (1997) 1059–1069. [Google Scholar]
- T. Xiao, Y. Fu, W. Zhu, R. Xu, L. Xu, P. Zhang, Y. Du, J. Cheng and H. Jiang, HDAC8, a potential therapeutic target, regulates proliferation and differentiation of bone marrow stromal cells in fibrous dysplasia. Stem Cells Transl. Med. 8 (2018) 148–161. [Google Scholar]
- S.L. Teitelbaum, Bone resorption by osteoclasts. Science 289 (2000) 1504–1508. [CrossRef] [PubMed] [Google Scholar]
- S.K. Verma, L.V. Chernomordik and K. Melikov, An improved metrics for osteoclast multinucleation. Sci. Rep. 8 (2018) 1768. [CrossRef] [Google Scholar]
- J.S. Lee, E.J. FitzGibbon, Y.R. Chen, H.J. Kim, L.R. Lustig, S.O. Akintoye, M.T. Collins and L.B. Kaban, Clinical guidelines for the management of craniofacial fibrous dysplasia. Orphanet J. Rare Dis. 7 (2012) S2. [CrossRef] [Google Scholar]
- P. Romanet, P. Philibert, F. Fina, T. Cuny, C. Roche, L. Ouafik, F. Paris, R. Reynaud and A. Barlier, Using digital droplet polymerase chain reaction to detect the mosaic ¡em¿gnas¡/em¿ mutations in whole blood DNA or circulating cell-free DNA in fibrous dysplasia and Mccune–Albright syndrome. J. Pediatr. 205 (2019) 281–285.e4. [CrossRef] [Google Scholar]
- L.F. de Castro, Z. Michel, K. Pan, J. Taylor, V. Szymczuk, S. Paravastu, B. Saboury, G.Z. Papadakis, X. Li, K. Milligan, B. Boyce, S.M. Paul, M.T. Collins and A.M. Boyce, Safety and efficacy of denosumab for fibrous dysplasia of bone. N. Engl. J. Med. 388 (2023) 766–768. [CrossRef] [PubMed] [Google Scholar]
- A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto and S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181 (2010) 259–270. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.