Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 33 | |
Section | Mathematical methods | |
DOI | https://doi.org/10.1051/mmnp/2024020 | |
Published online | 06 January 2025 |
- C.D. Pérez-Blanco, A. Hrast-Essenfelder and C. Perry, Irrigation technology and water conservation: a review of the theory and evidence. Rev. Environ. Econ. Policy 14 (2020) 216–239. [CrossRef] [Google Scholar]
- P.D. Brown, T.A. Cochrane and T.D. Krom, Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing. Agric. Water Manag. 97 (2010) 892–900. [CrossRef] [Google Scholar]
- N. Kalboussi, S. Roux, K. Boumaza, C. Sinfort and A. Rapaport, About modeling and control strategies for scheduling crop irrigation. IFAC-PapersOnLine 52 (2019) 43–48. [CrossRef] [Google Scholar]
- S.O. Lopes, R.M.S. Pereira and P.A. Pereira, Optimal control applied to an irrigation planning problem: a real case study in Portugal. Int. J. Hydrol. Sci. Technol. 9 (2019) 173–188. [CrossRef] [Google Scholar]
- N. Zeng, L. Cen, Y. Xie and S. Zhang, Nonlinear optimal control of cascaded irrigation canals with conservation law PDEs. Control Eng. Pract. 100 (2020) 104407. [CrossRef] [Google Scholar]
- H. Zhang and T. Oweis, Water–yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric. Water Manag. 38 (1999) 195–211. [CrossRef] [Google Scholar]
- A.P. Lemos-Paião, S.O. Lopes and M.d.R. de Pinho, Analytical study for different extremal state solutions of an irrigation optimal control problem with field capacity modes. Int. J. Appl. Comput. Math. 8, 67 (2022) 27. [Google Scholar]
- S.O. Lopes, F.A.C.C. Fontes, A.C.D. Caldeira and R.M.S. Pereira, Optimal control of irrigation with field capacity modes: characterizing the minimal water consumption solution, in 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO) (2018) 300–305. [Google Scholar]
- S.O. Lopes, F.A.C.C. Fontes, R.M.S. Pereira, M. de Pinho and A.M. Gonçalves, Optimal control applied to an irrigation planning problem. Math. Probl. Eng. 10 (2016) 2016. [Google Scholar]
- C. Büskens and H. Maurer, *Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 57–68. [CrossRef] [Google Scholar]
- A.B. Berkelaar, K. Roos and T. Terlaky, The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming. Springer US, Boston, MA (1997) 159–202. [Google Scholar]
- M. Grötschel, S.O. Krumke and J. Rambau, editors, Online Optimization of Large Scale Systems. Springer-Verlag, Berlin (2001). [Google Scholar]
- A.G. Hadigheh, O. Romanko and T. Terlaky, Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors. Algorith. Oper. Res. 2 (2007) 94–111. [Google Scholar]
- A.G. Hadigheh and T. Terlaky, Sensitivity analysis in convex quadratic optimization: invariant support set interval. Optimization 54 (2005) 59–79. [CrossRef] [MathSciNet] [Google Scholar]
- W. Wei, K. Teo and Z. Zhan, A numerical method for an optimal control problem with minimum sensitivity on coefficient variation. Appl. Math. Computat. 218 (2011) 1180–1190. [CrossRef] [Google Scholar]
- C. Büskens, Optimierungmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Westfälischen Wilhelms-Universitat Münster (1998). [Google Scholar]
- C. Büskens and M. Gerdts, Emergency Landing of a Hypersonic Flight System: A Corrector Iteration Method for Admissible Real-time Optimal Control Approximations. Munich, Germany (2003). [Google Scholar]
- C. Büskens and H. Maurer, SQP-methods for Solving Optimal Control Problems with Control and State Constraints: Adjoint Variables, Sensitivity Analysis and reAl-time Control, 120 (2000) 85–108. [Google Scholar]
- M. Gerdts, Optimal Control of ODEs and DAEs. De Gruyter Textbook. Walter de Gruyter & Co., Berlin (2012). [CrossRef] [Google Scholar]
- A. Reiter, H. Gattringer and A. Müller, Real-time computation of inexact minimum-energy trajectories using parametric sensitivities, in Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, Vol. 49, edited by C. Ferraresi and G. Quaglia. Springer, Cham (2018). [Google Scholar]
- A. Reiter, A. Müller and H. Gattringer, Rapid nearly-optimal rendezvous trajectory planning using parameter Sensitivities, in ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences (Courses and Lectures), Vol. 584, edited by V. Arakelian and P. Wenger. Springer, Cham (2019). [Google Scholar]
- C. Specht, M. Gerdts and R. Lampariello, Neighborhood estimation in sensitivity-based update rules for real-time optimal control, in 2020 European Control Conference (ECC) (2020) 1999–2006. [CrossRef] [Google Scholar]
- C. Büskens and H. Maurer, *Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 3–16. [Google Scholar]
- A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods. Math. Programm. 10 (1976) 287–311. [CrossRef] [Google Scholar]
- A.V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Vol. 165 of Mathematics in Science and Engineering. Academic Press, Inc., Orlando, FL (1983). [Google Scholar]
- S.M. Robinson, Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms. Math. Program. 7 (1974) 1–16. [CrossRef] [Google Scholar]
- A. Kiparissides, S.S. Kucherenko, A. Mantalaris and E.N. Pistikopoulos, Global sensitivity analysis challenges in biological systems modeling. Ind. Eng. Chem. Res. 48 (2009) 7168–7180. [CrossRef] [Google Scholar]
- A. Kiparissides, M. Rodriguez-Fernandez, S. Kucherenko, A. Mantalaris and E. Pistikopoulos, Application of global sensitivity analysis to biological models, in 18th European Symposium on Computer Aided Process Engineering, Vol. 25 of Computer Aided Chemical Engineering, edited by B. Braunschweig and X. Joulia. Elsevier (2008) 689–694. [CrossRef] [Google Scholar]
- C. Kontoravdi, S.P. Asprey, E.N. Pistikopoulos and A. Mantalaris, Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures. Biotechnol. Prog. 21 (2005) 1128–1135. [Google Scholar]
- P. Tøndel, T.A. Johansen and A. Bemporad, An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica 39 (2003) 489–497. [CrossRef] [MathSciNet] [Google Scholar]
- C. Büskens, H.J. Pesch and S. Winderl, Real-time solutions of bang-bang and singular optimal control Problems, in Online Optimization of Large Scale Systems. Springer, Berlin (2001) 129–142. [CrossRef] [Google Scholar]
- H. Maurer and G. Vossen, Sufficient conditions and sensitivity analysis for optimal bang-bang control problems with state constraints, in Proceedings of the 23rd IFIP Conference on System Modeling and Optimization (2007). [Google Scholar]
- R.F. Hartl, S.P. Sethi and R.G. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37 (1995) 181–218. [CrossRef] [MathSciNet] [Google Scholar]
- L.W. Neustadt, Optimization. Princeton University Press, Princeton, N.J. (1976). [Google Scholar]
- A. Barclay, P.E. Gill and J.B. Rosen, SQP methods and their application to numerical optimal control, in Variational Calculus, Optimal Control and Applications (Trassenheide, 1996), Vol. 124 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1998) 207–222. [CrossRef] [Google Scholar]
- J.T. Betts, Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21 (1998) 193–207. [CrossRef] [Google Scholar]
- R. Fletcher, Practical Methods of Optimization. Vol. 2. John Wiley & Sons, Ltd., Chichester (1981). [Google Scholar]
- R.G. Allen, L.S. Pereira, D. Raes and M. Smith, Crop evapotranspiration – guidelines for computing crop water requirements. Technical report, Food and Agriculture Organization: Irrigation and drainage paper 56 (1998). [Google Scholar]
- R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Scientific Press series. Thomson, Brooks, Cole (2003). [Google Scholar]
- D.M. Gay, The AMPL modeling language: an aid to formulating and solving optimization problems, in Numerical Analysis and Optimization, Vol. 134 of Springer Proc. Math. Stat. Springer, Cham (2015) 95–116. [CrossRef] [Google Scholar]
- A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (2006) 25–57. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.