Open Access
Issue
Math. Model. Nat. Phenom.
Volume 20, 2025
Article Number 1
Number of page(s) 16
Section Physics
DOI https://doi.org/10.1051/mmnp/2024023
Published online 03 January 2025
  1. B.A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. Jo. Phys. 64 (2019) 106. [Google Scholar]
  2. D. Mihalache, Localized structures in optical and matter-wave media: a selection of recent studies. Roman. Rep. Phys. 73 (2021) 403. [Google Scholar]
  3. D. Mihalache, Localized structures in optical media and Bose–Einstein condensates: an overview of recent theoretical and experimental results. Roman. Rep. Phys. 76 (2024) 402. [CrossRef] [Google Scholar]
  4. S.M. Shandarov and E.S. Shandarov, Photorefractive slit waves. Tech. Phys. Lett. 23 (1997) 586–588. [CrossRef] [Google Scholar]
  5. T.H. Zhang, X.K. Ren, B.H. Wang, C.B. Lou, Z.J. Hu, W.W. Shao, Y.H. Xu, H.Z. Kang, J. Yang, D.P. Yang, L. Feng and J.J. Xu, Surface waves with photorefractive nonlinearity. Phys. Rev. A 76 (2007) 013827. [CrossRef] [Google Scholar]
  6. Z. Luo, F. Liu, Y. Xu, H. Liu, T. Zhang, J. Xu and J. Tian, Dark surface waves in self-focusing media with diffusion and photovoltaic nonlinearities. Opt. Express, 21 (2013) 15075–15080. [CrossRef] [Google Scholar]
  7. P.F. Qi, Z.J. Hu, R. Han, T.H. Zhang, J.G. Tian and J.J. Xu, Apodized waveguide arrays induced by photorefractive nonlinear surface waves. Opt. Express 23 (2015) 31144–31149. [CrossRef] [Google Scholar]
  8. L. Chun-Yang, J. Ying, S. De, M. Yi-Ning, Y. Ji-Kai and C. Wei-Jun, Guided modes in thin layer waveguide induced by photorefractive surface waves. Chinese J. Luminescence 39 (2018) 1572–1578. [CrossRef] [Google Scholar]
  9. S.E. Savotchenko, Propagation of surface waves along a dielectric layer in a photorefractive crystal with a diffusion mechanism for the nonlinearity formation. Quant. Electron. 49 (2019) 850–856. [CrossRef] [Google Scholar]
  10. S.E. Savotchenko, Nonlinear surface TM waves in a Kerr defocusing nonlinear slab sandwiched between photorefractive crystals. Solid State Commun. 296 (2019) 32–36. [CrossRef] [Google Scholar]
  11. S.E. Savotchenko, Nonlinear surface waves at the interface between optical media with different nonlinearity induction mechanisms. JETP 129 (2019) 159–167. [CrossRef] [Google Scholar]
  12. S.E. Savotchenko, Effect of the dark illumination intensity on the characteristics of surface waves propagating along the interface between photorefractive and nonlinear Kerr crystals. Russ. Phys. J. 63 (2020) 160–170. [CrossRef] [Google Scholar]
  13. S.E. Savotchenko, Surface waves at the boundary of a photorefractive crystal and a medium with positive Kerr nonlinearity. Phys. Solid State 62 (2020) 1011–1016. [CrossRef] [Google Scholar]
  14. S.E. Savotchenko, Surface waves at the boundary of a medium with a refractive index switching and a crystal with the diffusion-type photorefractive nonlinearity. Phys. Solid State 62 (2020) 1415–1420. [CrossRef] [Google Scholar]
  15. B.A. Usievich, D.Kh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov and N.V. Bogodaev, Nonlinear surface waves on the boundary of a photorefractive crystal. Quant. Electron. 40 (2010) 437–440. [CrossRef] [Google Scholar]
  16. S.A. Chetkin and I.M. Akhmedzhanov, Optical surface wave in a crystal with diffusion photorefractive nonlinearity. Quant. Electron. 41 (2011) 980–985. [CrossRef] [Google Scholar]
  17. B.A. Usievich, D.Kh. Nurligareev, V.A. Sychugov, L.I. Ivleva, P.A. Lykov and N.V. Bogodaev, Surface photorefractive wave on the boundary of a photorefractive metal-coated crystal. Quant. Electron. 41 (2011) 262–266. [CrossRef] [Google Scholar]
  18. D.Kh. Nurligareev, B.A. Usievich, V.A. Sychugov and L.I. Ivleva, Characteristics of surface photorefractive waves in a nonlinear SBN-75 crystal coated with a metal film. Quant. Electron. 43 (2013) 14–20. [CrossRef] [Google Scholar]
  19. A.B. Shvartsburg and A. Maradudin, Waves in Gradient Metamaterials. World Scientific, Singapore (2013) 339. [Google Scholar]
  20. S.J. Al-Bader and H.A. Jamid, Graded-index optical waveguides with nonlinear cladding. J. Opt. Soc. Am. A 5 (1988) 374–379. [CrossRef] [Google Scholar]
  21. M.J. Adams, An Introduction to Optical Waveguides. Wiley, Chichester (1981). [Google Scholar]
  22. C.-L. Chen, Foundations for Guided-wave Optics. John Wiley & Sons, Inc. (2005) 462. [Google Scholar]
  23. P. D’Ancona, Kato smoothing and strichartz estimates for wave equations with magnetic potentials. Commun. Math. Phys. 335 (2015) 1–16 [CrossRef] [Google Scholar]
  24. F. Cacciafesta, P. D’Ancona and R. Lucà, Renato Helmholtz and dispersive equations with variable coefficients on exterior domains. SIAM J. Math. Anal. 48 (2016) 1798–1832. [CrossRef] [MathSciNet] [Google Scholar]
  25. A.D. Polyanin and A.I. Zhurov, Separation of Variables and Exact Solutions to Nonlinear PDEs. CRC Press, Taylor and Francis Group, LLC, Boca Raton, London (2022) 382. [Google Scholar]
  26. Z. Cao, Y. Jiang, Q. Shen, X. Dou and Y. Chen, Exact analytical method for planar optical waveguides with arbitrary index profile. J. Opt. Soc. Am. A 16 (1999) 2209–2212. [CrossRef] [Google Scholar]
  27. N.A. Kudryashov, Optical solitons of mathematical model with arbitrary refractive index. Optik 224 (2020) 165391. [NASA ADS] [CrossRef] [Google Scholar]
  28. N.A. Kudryashov, Optical solitons of the Chen–Lee–Liu equation with arbitrary refractive index. Optik 247 (2021) 167935. [CrossRef] [Google Scholar]
  29. G. Akram, M. Sadaf and I. Zainab, The dynamical study of Biswas-–Arshed equation via modified auxiliary equation method. Optik 255 (2022) 168614. [CrossRef] [Google Scholar]
  30. N.A. Kudryashov and A. Biswas, Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 252 (2022) 168497. [CrossRef] [Google Scholar]
  31. N.A. Kudryashov, Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 259 (2022) 168888. [CrossRef] [Google Scholar]
  32. S.A. Odintsov, E.H. Lock, E.N. Beginin and A.V. Sadovnikov, Nonreciprocal propagation of spin waves in a bilayer magnonic waveguide based on yttrium-iron garnet films. Russ. Technol. J. 10 (2022) 55–64. [CrossRef] [Google Scholar]
  33. Y. Yıldırım, A. Biswas, A.H. Kara, M. Ekici, E.M.E. Zayed, A.K. Alzahrani and M.R. Belic, Optical solitons and conservation law with Kudryashov’s form of arbitrary refractive index. J. Opt. (India) 50 (2021) 542–547. [Google Scholar]
  34. E.M.E. Zayed, A.G. Al-Nowehy, M.E.M. Alngar, A. Biswas, M. Asma, M. Ekici, A.K. Alzahrani and M.R. Belic, Highly dispersive optical solitons in birefringent fibers with four nonlinear forms using Kudryashov’s approach. J. Opt. (India) 50 (2021) 120–131. [CrossRef] [Google Scholar]
  35. J. Vega-Guzman, A. Biswas, M. Asma, A.R. Seadawy, M. Ekici, A.K. Alzahrani and M.R. Belic, Optical soliton perturbation with parabolic–nonlocal combo nonlinearity: undetermined coefficients and semi-inverse variational principle. J. Opt. (India) 51 (2022) 22–28. [CrossRef] [Google Scholar]
  36. A. Jawad and M. Abu-Al Shaeer, Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Rafidain J. Eng. Sci. 1 (2023) 1–8. [Google Scholar]
  37. M. Jawad A. Jafar, Y. Yildirim, A. Biswas, I.K. Ibraheem and A.S. Alshomrani, Highly dispersive optical solitons with differential group delay for kerr law of self-phase modulation by Sardar sub-equation approach. Contemp. Math. 5 (2024) 3839–383957. [Google Scholar]
  38. A.J.M. Jawad, A. Biswas, Y. Yildirim and A.S. Alshomrani, Highly dispersive optical solitons with quadratic-cubic nonlinear form of self-phase modulation by Sardar sub-equation approach. Contemp. Math. 5 (2024) 1300–1322. [Google Scholar]
  39. N. Jihad and M. Abd Almuhsan, Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci. 1 (2023) 81–92. [CrossRef] [Google Scholar]
  40. A.J.M. Jawad, A. Biswas, Y. Yildirim and A.S. Alshomrani, A fresh perspective on the concatenation model in optical fibers with Kerr law of self-phase modulation. Eng. Sci. Technol. 5 (2024) 195–208. [CrossRef] [Google Scholar]
  41. A.J.M. Jawad, A. Biswas, Y. Yildirim and A.S. Alshomrani, Dark-singular straddled optical solitons for the dispersive concatenation model with power-law of self-phase modulation by Tanh-Coth approach. Contemp. Math. 5 (2024) 3198–3214. [CrossRef] [Google Scholar]
  42. A. Jawad and A. Biswas, Solutions of resonant nonlinear Schrödinger’s equation with exotic non-Kerr law nonlinearities. Rafidain J. Eng. Sci. 2 (2023) 43–50. [Google Scholar]
  43. T. Aytug, A. Lupini, G. Jellison, P.C. Joshi, I. Ivanov, T. Liu, P. Wang, R. Menon, R. Trejo, E. Lara-Curzio, S. Hunter, J. Simpson, P. Paranthaman and D. Christen, Monolithic graded-refractive-index glass-based antireflective coatings: broadband/omnidirectional light harvesting and self cleaning characteristics. J. Mater. Chem. C 3 (2015) 5440. [CrossRef] [Google Scholar]
  44. J. Zheng, W. Zhao, B. Zhao, C. Hou, Z. Li, G. Li, Q. Gao, P. Ju, W. Gao, S. She, P. Wu and W. Li, 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique. Opt. Mater. Express 7 (2017) 1259–1266. [CrossRef] [Google Scholar]
  45. F. Gaufillet and E. Akmansoy, Design and experimental evidence of a flat graded-index photonic crystal lens. J. Appl. Phys. 114 (2013) 083105. [CrossRef] [Google Scholar]
  46. H. Rauh, G.I. Yampolskaya and S.V. Yampolskii, Optical transmittance of photonic structures with linearly graded dielectric constituents. New J. Phys. 12 (2010) 073033. [CrossRef] [Google Scholar]
  47. K. Ratra, M. Singh and A.K. Goyal, Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal. J. Nanophoton. 14 (2020) 026005. [CrossRef] [Google Scholar]
  48. Y.B. Kim, J.W. Cho, Y.J. Lee, B. Dukkyu and S.-K. Kim, High-index-contrast photonic structures: a versatile platform for photon manipulation. Light Sci. Appl. 11 (2022) 316. [CrossRef] [Google Scholar]
  49. B.K. Singh, A. Bijalwan, P.C. Pandey and V. Rastogi, Photonic bandgaps engineering in double graded hyperbolic, exponential and linear index materials embedded one-dimensional photonic crystals. Eng. Res. Express 1 (2019) 025004. [CrossRef] [Google Scholar]
  50. B.K. Singh, A. Bijalwan, P.C. Pandey and V. Rastogi, Multi-channel photonic bandgap consequences in one-dimensional linear, exponential, and hyperbolic graded-index photonic crystals. J. Opt. Soc. Am. B 37 (2020) 523. [CrossRef] [Google Scholar]
  51. D. Dash and J. Saini, Hyperbolic graded index biophotonic cholesterol sensor with improved sensitivity. Progr. Electromagnet. Res. M 116 (2023) 165–176. [CrossRef] [Google Scholar]
  52. P. Yeh, Optical Wave in Layered Media. Wiley, New Jersey (1988). [Google Scholar]
  53. S.E. Savotchenko, The surface waves propagating along the contact between the layer with the constant gradient of refractive index and photorefractive crystal. J. Opt. 24 (2022) 045501. [Google Scholar]
  54. S.E. Savotchenko, Waveguide properties of interface separating a photorefractive crystal with diffusion nonlinearity and an exponential graded-index medium. Phys. Lett. A 455 (2022) 128516. [CrossRef] [Google Scholar]
  55. S.E. Savotchenko, Surface waves propagating along the interface between parabolic graded-index medium and photorefractive crystal with diffusion nonlinearity. Physica B: Condensed Matter 648 (2023) 414434. [CrossRef] [Google Scholar]
  56. S.E. Savotchenko, Temperature controlled waveguide properties of the linearly graded-index film in semiconductor crystal with the photorefractive nonlinearity. Appl. Phys. B: Lasers Opt. 129 (2023) 7. [CrossRef] [Google Scholar]
  57. S.E. Savotchenko, The effect of dielectric slab between photorefractive crystal and graded-index medium on the surface wave properties. Physica E 147 (2023) 115622. [CrossRef] [Google Scholar]
  58. S.E. Savotchenko, Nonlinear waves in a composite optical structure containing a dielectric layer between a photorefractive crystal and a medium with an exponential index profile. Waves in Random and Complex Media (2023). [Google Scholar]
  59. S.E. Savotchenko, Nonlinear surface waves propagating along an interface between the Kerr nonlinear and hyperbolic graded-index crystals. J. Opt. (India) 53 (2024). [Google Scholar]
  60. S.E. Savotchenko, Features of the surface wave propagation along the interface between the hyperbolic graded-index layer and nonlinear medium with a step change in the dielectric constant. Phys. Lett. A 524 (2024) 129822. [CrossRef] [Google Scholar]
  61. S.E. Savotchenko, Effect of the temperature on the redistribution of an energy flux carried by surface waves along the interface between crystals with different mechanisms of formation of a nonlinear response. JETP Lett. 109 (2019) 744–748. [CrossRef] [Google Scholar]
  62. W. Van Assche, Ordinary Special Functions. Encyclopedia of Mathematical Physics edited by J.-P. Françoise, G. L. Naber and T.S. Tsun. Academic Press, New York (2006) 637–645. [CrossRef] [Google Scholar]
  63. V.K. Chaubey, K.K. Dey and P. Khastgir, Field intensity and power confinement of four-layer slab waveguides with various refractive index profiles in the guiding region. J. Opt. Commun. 15 (1994) 95–100. [CrossRef] [Google Scholar]
  64. L.V. Fedorov and K.D. Ljahomskaja, Nonlinear surface waves with allowance for the saturation effect. Tech. Phys. Lett. 23 (1997) 915–916. [CrossRef] [Google Scholar]
  65. O.V. Korovai and P.I. Khadzhi, Nonlinear asymmetric waves induced in a symmetrical three-layer structure by the generation of excitons and biexcitons in semiconductors. Phys. Solid State 50 (2008) 1116–1120. [Google Scholar]
  66. O.V. Korovai, Nonlinear s-polarized quasi-surface waves in the symmetric structure with a metamaterial core. Phys. Solid State 57 (2015) 1456–1462. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.