Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 42 | |
Section | Mathematical methods | |
DOI | https://doi.org/10.1051/mmnp/2025005 | |
Published online | 24 March 2025 |
- L.E.O.C. Aragão, The rainforest’s water pump. Nature 489 (2012) 217–218. [Google Scholar]
- S. Batool, K. Khan, A. Ghaffar and S.Z. Hussain, Forest cover change detection and its impact on rainfall pattern in Thak valley (Pakistan). Pak. J. Sci. 67 (2015) 1–8. [Google Scholar]
- D.V. Spracklen, S.R. Arnold and C.M. Taylor, Observations of increased tropical rainfall preceded by air passage over forests. Nature 489 (2012) 282–285. [Google Scholar]
- J.A. Foley, R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter and P.K. Snyder, Global consequences of land use. Science 309 (2005) 570–574. [CrossRef] [PubMed] [Google Scholar]
- D. Werth and R. Avissar, The local and global effects of amazon deforestation. J. Geop. Res. 107 (2002) LBA-55. [Google Scholar]
- J. Shukla, C. Nobre and P. Sellers, Amazon deforestation and climate change. Science 247 (1990) 1322–1325. [Google Scholar]
- A.K. Misra and A. Tripathi, A stochastic model for making artificial rain using aerosols. Physics A 505 (2018) 1113–1126. [Google Scholar]
- J.B. Shukla, A.K. Misra, R. Naresh and P. Chandra, How artificial rain can be produced? A mathematical model, Nonl. Anal. (RWA) 11 (2010) 2659–2668. [Google Scholar]
- J.B. Shukla, S. Sundar, A.K. Misra and R. Naresh, Modeling the effects of aerosols to increase rainfall in regions with shortage. Met. Atmos. Phys. 120 (2013) 157–163. [Google Scholar]
- S. Sundar and R.K. Sharma, The role of aerosols to increase rainfall in the regions with less intensity rain: a modeling study. Comp. Ecol. Sof. 3 (2013) 1–8. [Google Scholar]
- A.K. Misra and A. Tripathi, An optimal control model for cloud seeding in a deterministic and stochastic environment. Optim. Contr. Appl. Meth. 41 (2020) 2166–2189. [Google Scholar]
- K. Lata and A.K. Misra, The influence of forestry resources on rainfall: a deterministic and stochastic model. Appl. Math. Model. 81 (2020) 673–689. [MathSciNet] [Google Scholar]
- A. Bullock and M. Acreman, The role of wetlands in the hydrological cycle. Hyd. Earth Sys. Sci. 7 (2003) 358–389. [CrossRef] [Google Scholar]
- S. Hu, Z. Niu, Y. Chen L. Li and H. Zhang, Global wetlands: potential distribution, wetland loss, and status. Sci. Tot. Environ. 586 (2017) 319–327. [Google Scholar]
- Z. Wang, J. Wu, M. Madden and D. Mao, China’s wetlands: conservation plans and policy impacts. Ambio 41 (2012) 782–786. [PubMed] [Google Scholar]
- L. Calatayud and J.M. Jornet, Mathematical modeling of adulthood obesity epidemic in Spain using deterministic, frequentist and Bayesian approaches. Chaos Sol. Frac. 140 (2020) 110179. [Google Scholar]
- N.H. Du and N.N. Nhu, Permanence and extinction for the stochastic SIR epidemic model. J. Differ. Equ. 269 (2020) 9619–9652. [Google Scholar]
- X. Mao, Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2006). [Google Scholar]
- D.H. Nguyen, G. Yin and C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J. Appl. Math. 80 (2020) 814–838. [Google Scholar]
- F. Rao and J. Luo, Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis. Chaos Sol. Frac. 152 (2021) 111344. [Google Scholar]
- R. Rudnicki, K. Pichór and M.T. Kamińska, Markov Semigroups and their Applications. Springer Berlin Heidelberg, Berlin (2002) 215–238. [Google Scholar]
- K. Sobczyk, Stochastic Differential Equations: Analytical Methods. Springer, Dordrecht (1991). [Google Scholar]
- X. Wang, Y. Tan, Y. Cai, K. Wang and W. Wang, Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response. Math. Biosci. Eng. 18 (2021) 616–642. [Google Scholar]
- C. Chen and Y. Kang, Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise. Commun. Nonlinear Sci. Numer. Simul. 42 (2017) 379–395. [Google Scholar]
- M. El. Fatini, A. Laaribi, R. Pettersson and R. Taki, Lévy noise perturbation for an epidemic model with impact of media coverage. Stochastics 91 (2019) 998–1019. [Google Scholar]
- Q. Liu, D. Jiang, T. Hayat and B. Ahmad, Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps. Nonlinear Anal. 27 (2018) 29–43. [Google Scholar]
- S.P. Rajasekar, M. Pitchaimani and Q. Zhu, Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Physics A 535 (2019) 122300. [Google Scholar]
- Y. Zhou, S. Yuan and D. Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps. Appl. Math. Comp. 275 (2016) 255–267. [Google Scholar]
- Y. Zhou and W. Zhang, Threshold of a stochastic SIR epidemic model with Lévy jumps. Physics A 446 (2016) 204–216. [Google Scholar]
- A. Kouidere, B. Khajji, O. Balatif and M. Rachik, A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control. J. Appl. Math. Comp. 67 (2021) 375–403. [Google Scholar]
- A. Kouidere, A. Labzai, B. Khajji, H. Ferjouchia, O. Balatif, A. Boutayeb and M. Rachik, Optimal control strategy with multi-delay in state and control variables of a discrete mathematical modeling for the dynamics of diabetic population. Commun. Math. Biol. Neursci. 2020 (2020) Article ID 14. [Google Scholar]
- W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975). [Google Scholar]
- W.E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems. Wiley, New York (2009). [Google Scholar]
- L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987). [Google Scholar]
- B. Øksendal, Stochastic Differential Equations, 4th edn. Springer-Verlag, New York (1995). [Google Scholar]
- G.E. Kolosov, Optimal Design of Control Systems: Stochastic and Deterministic Problems. CRC Press, Boca Raton (1999). [Google Scholar]
- D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge Press, New York (2009). [Google Scholar]
- Compilation Committee of Shanghe County Annals (ed.), Shanghe County Annals. Jinan Publishing House, China (1994) (in Chinese). [Google Scholar]
- W.Q. Jiang, Q. Mao and W.W. Zhang, Planning and Construction of Modern Water Network System in Shanghe County (in Chinese). Shandong Water Conserv. 44 (2013) 44–46. [Google Scholar]
- J. Bai, B. Cui, H. Cao, A. Li and B. Zhang, Wetland degradation and ecological Restoration. Sci. World J. (2013) 538–564 [Google Scholar]
- D. Mao, Z. Wang, J. Wu, B. Wu, Y. Zeng, K. Song, K. Yi and L.K. Luo, China’s wetlands loss to urban expansion. Land Deg. Dev. 29 (2018) 2644–2657. [Google Scholar]
- M. Meng, M. He, B. Hu, X. Mo, H. Li, B. Liu and Z. Wang, Status of wetlands in China: a review of extent, degradation, issues and recommendations for improvement. Ocean Coastal Man. 146 (2017) 50–59. [Google Scholar]
- S. Hassell and Z.W. Catherine, Mathematical model of diabetes and lipid metabolism linked to diet, leptin sensitivity, insulin sensitivity and VLDLTG clearance predicts paths to health and type II diabetes. J. Theor. Biol. 486 (2020) 110037. [Google Scholar]
- J.B. Zedler and S. Kercher, Wetland resources: status, trends, ecosystem services, and Restorability. Annu. Rev. Env. Res. 30 (2005) 39–74. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.