Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 7 | |
Number of page(s) | 24 | |
Section | Mathematical methods | |
DOI | https://doi.org/10.1051/mmnp/2025009 | |
Published online | 24 March 2025 |
- E. Estrada, What is a complex system, after all? Found. Sci. 29 (2024) 11–1170. [Google Scholar]
- S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics. Phys. Rep. 424 (2006) 175–308. [Google Scholar]
- E. Estrada, The Structure of Complex Networks: Theory and Applications. Oxford University Press (2012). [Google Scholar]
- O. Artime, M. Grassia, M. De Domenico, J.P. Gleeson, H.A. Makse, G. Mangioni, M. Perc and F. Radicchi, Robustness and resilience of complex networks. Nat. Rev. Phys. 6 (2024) 114–131. [Google Scholar]
- L.d.F. Costa, F.A. Rodrigues, G. Travieso and P.R. Villas Boas, Characterization of complex networks: a survey of measurements. Adv. Phys. 56 (2007) 167–242. [CrossRef] [Google Scholar]
- M. Cucuringu, H. Li, H. Sun and L. Zanetti, Hermitian matrices for clustering directed graphs: insights and applications, in International Conference on Artificial Intelligence and Statistics. PMLR (2020) 983–992. [Google Scholar]
- B. Mohar, A new kind of hermitian matrices for digraphs. Linear Algebra Appl. 584 (2020) 343–352. [CrossRef] [MathSciNet] [Google Scholar]
- S. Furutani, T. Shibahara, M. Akiyama, K. Hato and M. Aida, Graph signal processing for directed graphs based on the hermitian Laplacian, in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I. Springer (2020) 447–463. [Google Scholar]
- X. Zhang, Y. He, N. Brugnone, M. Perlmutter and M. Hirn, Magnet: a neural network for directed graphs. Adv. Neural Inform. Process. Syst. 34 (2021) 27003–27015. [Google Scholar]
- K. Hayashi, S.G. Aksoy and H. Park, Skew-symmetric adjacency matrices for clustering directed graphs, in 2022 IEEE International Conference on Big Data (Big Data). IEEE (2022) 555–564. [Google Scholar]
- M. Abudayah, O. Alomari and O. AbuGhneim, Inverse of hermitian adjacency matrix of a mixed graph. Appl. Math. 16 (2022) 823–828. [Google Scholar]
- K. Guo and B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs. J. Graph Theory 85 (2017) 217–248. [CrossRef] [MathSciNet] [Google Scholar]
- S. Li and Y. Yu, Hermitian adjacency matrix of the second kind for mixed graphs. Discrete Math. 345 (2022) 112798. [Google Scholar]
- L. Böttcher and M.A. Porter, Complex networks with complex weights. Phys. Rev. E 109 (2024) 024314. [Google Scholar]
- N. Athmouni, H. Baloudi, M. Damak and M. Ennaceur, The magnetic discrete Laplacian inferred from the Gauß–Bonnet operator and application. Ann. Funct. Anal. 12 (2021) 33. [Google Scholar]
- E. Korotyaev and N. Saburova, Magnetic Schrödinger operators on periodic discrete graphs. J. Funct. Anal. 272 (2017) 1625–1660. [Google Scholar]
- E. Korotyaev and N. Saburova, Trace formulas for magnetic Schrödinger operators on periodic graphs and their applications. Linear Algebra Appl. 676 (2023) 395–440. [Google Scholar]
- Y. Higuchi, S. Kubota and E. Segawa, On symmetric spectra of Hermitian adjacency matrices for non-bipartite mixed graphs. Discrete Math. 347 (2024) 113911. [Google Scholar]
- Y. Higuchi and T. Shirai, A remark on the spectrum of magnetic Laplacian on a graph. Yokohama Math. J. 47 (1999) 129–141. [Google Scholar]
- J.S.F. Carrasco, F. Lledó and O. Post, Matching number, Hamiltonian graphs and discrete magnetic Laplacians. Linear Algebra Appl. (2022) 86–100. [Google Scholar]
- M. Shubin, Discrete magnetic Laplacian. Commun. Math. Phys. 164 (1994) 259–275. [Google Scholar]
- G. Berkolaiko, Nodal count of graph eigenfunctions via magnetic perturbation. Anal. PDE 6 (2013) 1213–1233. [MathSciNet] [Google Scholar]
- Y. Colin de Verdière, Magnetic interpretation of the nodal defect on graphs. Anal. PDE 6 (2013) 1235–1242. [MathSciNet] [Google Scholar]
- M. Fanuel, C.M. Alaiz and J.A. Suykens, Magnetic eigenmaps for community detection in directed networks. Phys. Rev. E 95 (2017) 022302. [Google Scholar]
- E. Estrada, Graphs and networks theory, in Mathematical Tools for Physicists. John Wiley & Sons Inc. (2013). [Google Scholar]
- M. Benzi and P. Boito, Matrix functions in network analysis. GAMM-Mitteilungen 43 (2020) e202000012. [Google Scholar]
- N.J. Higham, Functions of Matrices: Theory and Computation. SIAM (2008). [Google Scholar]
- I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44 (1938) 522–536. [Google Scholar]
- A.Y. Alfakih, A remark on the faces of the cone of Euclidean distance matrices. Linear Algebra Appl. 414 (2006) 266–270. [Google Scholar]
- R. Balaji and R.B. Bapat, On Euclidean distance matrices. Linear Algebra Appl. 424 (2007) 108–117. [Google Scholar]
- I. Dokmanic, R. Parhizkar, J. Ranieri and M. Vetterli, Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32 (2015) 12–30. [CrossRef] [Google Scholar]
- J.C. Gower, Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl. 67 (1985) 81–97. [Google Scholar]
- G. Jaklič and J. Modic, On Euclidean distance matrices of graphs. Electron. J. Linear Algebra 26 (2013) 574–589. [Google Scholar]
- N. Krislock and H. Wolkowicz, Euclidean Distance Matrices and Applications. Springer (2012). [Google Scholar]
- C.-K. Li, T. Milligan and M. Trosset, Euclidean and circum-Euclidean distance matrices: Characterizations and linear preservers. Electron. J. Linear Algebra 20 (2010) 739–752. [Google Scholar]
- P. Tarazaga, T.L. Hayden and J. Wells, Circum-Euclidean distance matrices and faces. Linear Algebra Appl. 232 (1996) 77–96. [Google Scholar]
- D.J. Klein and M. Randić, Resistance distance. J. Math. Chem. 12 (1993) 81–95. [Google Scholar]
- U. Von Luxburg, A. Radl and M. Hein, Getting lost in space: Large sample analysis of the commute distance. Adv. Neural Inform. Process. Syst. 23 (2010) 2622–2630. [Google Scholar]
- W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110 (2003) 284–289. [Google Scholar]
- J.L. Palacios, Resistance distance in graphs and random walks. Int. J. Quant. Chem. 81 (2001) 29–33. [Google Scholar]
- Y. Yang and H. Zhang, Some rules on resistance distance with applications. J. Phys. A: Math. Theor. 41 (2008) 445203. [CrossRef] [Google Scholar]
- A. Ghosh, S. Boyd and A. Saberi, Minimizing effective resistance of a graph. SIAM Rev. 50 (2008) 37–66. [CrossRef] [MathSciNet] [Google Scholar]
- R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. 102 (2005) 7426–7431. [Google Scholar]
- R.R. Coifman and S. Lafon, Diffusion maps. Appl. Computat. Harmonic Anal. 21 (2006) 5–30. [Google Scholar]
- R.R. Coifman, I.G. Kevrekidis, S. Lafon, M. Maggioni and B. Nadler, Diffusion maps, reduction coordinates and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7 (2008) 842–864. [MathSciNet] [Google Scholar]
- R.R. Coifman and M.J. Hirn, Diffusion maps for changing data. Appl. Computat. Harmonic Anal. 36 (2014) 79–107. [Google Scholar]
- M.J. Goldberg and S. Kim, Some remarks on diffusion distances. J. Appl. Math. 2010 (2010) 464815. [Google Scholar]
- E. Estrada, The communicability distance in graphs. Linear Algebra Appl. 436 (2012) 4317–4328. [Google Scholar]
- E. Estrada, M.G. Sanchez-Lirola and J.A. De La Peña, Hyperspherical embedding of graphs and networks in communicability spaces. Discrete Appl. Math. 176 (2014) 53–77. [Google Scholar]
- E. Estrada and N. Hatano, Communicability angle and the spatial efficiency of networks. SIAM Rev. 58 (2016) 692–715. [Google Scholar]
- E. Estrada, Every nonsingular spherical Euclidean distance matrix is a resistance distance matrix. Linear Algebra Appl. 656 (2023) 198–209. [Google Scholar]
- E. Estrada, J. Gómez-Gardeñes and L. Lacasa, Network bypasses sustain complexity. Proc. Natl. Acad. Sci. 120 (2023) e2305001120. [Google Scholar]
- E. Estrada, Communicability cosine distance: similarity and symmetry in graphs/networks. Computat. Appl. Math. 43 (2024) 49. [Google Scholar]
- K. Scharnhorst, Angles in complex vector spaces. Acta Appl. Math. 69 (2001) 95–103. [Google Scholar]
- E. Estrada and J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks. Phys. Rev. E 71 (2005) 056103. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- E. Estrada and N. Hatano, Communicability in complex networks. Phys. Rev. E 77 (2008) 036111. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- E. Estrada, N. Hatano and M. Benzi, The physics of communicability in complex networks. Phys. Rep. 514 (2012) 89–119. [Google Scholar]
- E. Estrada, The many facets of the Estrada indices of graphs and networks. SeMA J. 79 (2022) 57–125. [Google Scholar]
- J.P. D’Angelo, Rational Sphere Maps. Birkhauser, Cham (2021). [Google Scholar]
- V. Thürey, The complex angle in normed spaces, in Journal of Physics: Conference Series, Vol. 490. IOP Publishing (2014) 012038. [CrossRef] [Google Scholar]
- R. Hammack, A geometric view of complex trigonometric functions. Coll. Math. J. 38 (2007) 210–217. [Google Scholar]
- M.G. Krein, Angular localization of the spectrum of a multiplicative integral in a Hilbert space. Funct. Anal. Appl. 3 (1969) 73–74. [Google Scholar]
- M. Sababheh, H.R. Moradi and Z. Heydarbeygi, Buzano, Krein and Cauchy-Schwarz inequalities. arXiv preprint arXiv:2010.02464 (2020). [Google Scholar]
- M. Vaccaro, sp(n)-orbits of isoclinic subspaces in the real Grassmannians. arXiv preprint arXiv:2111.14550 (2021). [Google Scholar]
- X.H. Mo, Minimal surfaces with constant Kähler angle in complex projective spaces. Proc. Am. Math. Soc. 121 (1994) 569–571. [Google Scholar]
- W. Goldman, Complex Hyperbolic Geometry. Oxford University Press (1999). [Google Scholar]
- A.L. Mandolesi, Full geometric interpretation of complex blades, determinants and Gramians. arXiv preprint arXiv:2403.17022 (2024). [Google Scholar]
- G. Giraud, Sur certames fonctions automorphes de deux variables. Ann. Sci. École Normale Supér. 38 (1921) 43–164. [Google Scholar]
- C. Koca and A.S. Sertöz, Angle between two complex lines. Note di Matematica, 44 (2024) 27–44. [Google Scholar]
- E. Kasner, Conformality in connection with functions of two complex variables. Trans. Am. Math. Soc. 48 (1948) 50–62. [Google Scholar]
- E. Kasner and J. DeCicco, Pseudo-conformal geometry: functions of two complex variables. (1942). [Google Scholar]
- M. Lin, Remarks on Kreĭn’s inequality. Math. Intell. 34 (2012). [Google Scholar]
- M. Lin, Angles, majorization, Wielandt inequality and applications. Phd thesis, University of Waterloo, Waterloo, Ontario, Canada (2013). Available at https://uwspace.uwaterloo.ca/items/75a8a204-9d23-4030-9b68-3e9b01a3256d. [Google Scholar]
- G. Fubini, Sulle metriche definite da una forma hermitiana: nota. Office graf. C. Ferrari (1904). [Google Scholar]
- E. Study, Kürzeste wege im komplexen gebiet. Math. Ann. 60 (1905) 321–378. [Google Scholar]
- D. Harbater, Potential theory over local and global fields, i. J. Algebra 148 (1992) 337–383. [Google Scholar]
- G. Rizza, Teoremi di curvatura in una v2n quasi hermitiana. Riv. Mat. Univ. Parma 2 (1961) 91–114. [Google Scholar]
- R. Jothi, S. Balaji, A. Wuster, J.A. Grochow, J. Gsponer, T.M. Przytycka, L. Aravind and M.M. Babu, Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol. Syst. Biol. 5 (2009) 294. [Google Scholar]
- L. Egghe, Development of hierarchy theory for digraphs using concentration theory based on a new type of Lorenz curve. Math. Comput. Model. 36 (2002) 587–602. [Google Scholar]
- M. Skuhersky, T. Wu, E. Yemini, A. Nejatbakhsh, E. Boyden and M. Tegmark, Toward a more accurate 3d atlas of C. elegans neurons. BMC Bioinform. 23 (2022) 195. [Google Scholar]
- T.P. Peixoto, Ordered community detection in directed networks. Phys. Rev. E 106 (2022) 024305. [Google Scholar]
- E. Letizia, P. Barucca and F. Lillo, Resolution of ranking hierarchies in directed networks. PLoS One 13 (2018) e0191604. [Google Scholar]
- F.M. Brady, Y. Zhang and A.E. Motter, Forget partitions: Cluster synchronization in directed networks generate hierarchies. arXiv preprint arXiv:2106.13220 (2021). [Google Scholar]
- D. Czégel and G. Palla, Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star? Sci. Rep. 5 (2015) 17994. [Google Scholar]
- E. Mones, L. Vicsek and T. Vicsek, Hierarchy measure for complex networks. PloS One 7 (2012) e33799. [Google Scholar]
- C. Pilgrim, W. Guo and S. Johnson, Organisational social influence on directed hierarchical graphs, from tyranny to anarchy. Sci. Rep. 10 (2020) 4388. [Google Scholar]
- F.S. Roberts, Graph Theory and its Applications to Problems of Society. SIAM (1978). [Google Scholar]
- J. Link, Does food web theory work for marine ecosystems? Mar. Ecol. Progr. Ser. 230 (2002) 1–9. [Google Scholar]
- T.M. Fruchterman and E.M. Reingold, Graph drawing by force-directed placement. Softw. Pract. Exp. 21 (1991) 1129–1164. [Google Scholar]
- Y. Choe, B.H. McCormick and W. Koh, Network connectivity analysis on the temporally augmented c. elegans web: a pilot study. Soc. Neurosci. Abstr. 30 (2004). [Google Scholar]
- J.G. White, E. Southgate, J.N. Thomson, S. Brenner et al., The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R Soc. Lond. B Biol. Sci. 314 (1986) 1–340. [Google Scholar]
- M.E. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 8577–8582. [Google Scholar]
- V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks. J. Statist. Mech. Theory Exp. 2008 (2008) 10008. [Google Scholar]
- N. Dugue and A. Perez, Directed Louvain: maximizing modularity in directed networks. PhD thesis, Université d’Orléans (2015). [Google Scholar]
- N. Dugué and A. Perez, Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization. Physica A 603 (2022) 127798. [Google Scholar]
- L. Li, X. He and G. Yan, Improved Louvain method for directed networks, in Intelligent Information Processing IX: 10th IFIP TC 12 International Conference, IIP 2018, Nanning, China, October 19–22, 2018, Proceedings 10. Springer (2018) 192–203. [Google Scholar]
- I.H. Hassan, M. Abdullahi and Y. Ali, Analysis of techniques for selecting appropriate number of clusters in k-means clustering algorithm. (2021). [Google Scholar]
- Y. Liu, Z. Li, H. Xiong, X. Gao and J. Wu, Understanding of internal clustering validation measures, in 2010 IEEE International Conference on Data Mining. IEEE (2010) 911–916. [Google Scholar]
- D.L. Linvill and P.L. Warren, Troll factories: manufacturing specialized disinformation on Twitter. Polit. Commun. 37 (2020) 447–467. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.