Open Access
Issue
Math. Model. Nat. Phenom.
Volume 20, 2025
Article Number 6
Number of page(s) 16
Section Engineering
DOI https://doi.org/10.1051/mmnp/2025010
Published online 17 March 2025
  1. H.B. Huntington, Electromigration in metals, in: Diffusion in Solids: Recent Developments, edited by A.S. Nowick. Academic Press (1975) Ch. 6. [Google Scholar]
  2. P.S. Ho and T. Kwok, Electromigration in metals. Rep. Prog. Phys. 52 (1989) 301–348. [CrossRef] [Google Scholar]
  3. P.J. Rous, T.L. Einstein and E.D. Williams, Theory of surface electromigration on metals: application to self-electromigration on Cu(111). Surf. Sci. 315 (1994) L995–L1002. [CrossRef] [Google Scholar]
  4. H. Park, A.K.L. Lim, A. Paul Alivisatos, J. Park and Paul L. McEuen, Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75 (1999) 301. [CrossRef] [Google Scholar]
  5. L. Valladares, L.L. Felix, A.B. Dominguez, T. Mitrelias, F. Sfigakis, S.I. Khondaker, C.H.W. Barnes and Y. Majima, Controlled electroplating and electromigration in nickel electrodes for nanogap formation. Nanotechnology 21 (2010) 445304. [CrossRef] [PubMed] [Google Scholar]
  6. L. Arzubiaga, F. Golmar, R. Liopis, F. Casanova and L.E. Hueso, Tailoring palladium nanocontacts by electromigration. Appl. Phys. Lett. 102 (2013) 193103. [CrossRef] [Google Scholar]
  7. R. Hoffmann-Vogel, Electromigration and the structure of metallic nanocontacts. Appl. Phys. Rev. 4 (2017) 031302. [CrossRef] [Google Scholar]
  8. F.A. Nichols and W.W. Mullins, Surface-(interface-) and volume-diffusion contributions to morphological changes driven by capillarity. Trans. Metall. Soc. AIME 233 (1965) 1840–1848. [Google Scholar]
  9. F.A. Nichols and W.W. Mullins, Morphological changes of a surface of revolution due to capillarity induced surface diffusion. J. Appl. Phys. 36 (1965) 1826. [CrossRef] [Google Scholar]
  10. J.W. Cahn, Stability of rods with anisotropic surface free energy. Scripta Metall. 13 (1979) 1069–1071. [CrossRef] [Google Scholar]
  11. A.J. Bernoff, A.L. Bertozzi and T.P. Witelski, Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93 (1998) 725–776. [CrossRef] [Google Scholar]
  12. B.D. Coleman, R.S. Falk and M. Moakher, Stability of cylindrical bodies in the theory of surface diffusion. Physica D 89 (1995) 123–135. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.S. McCallum, P.W. Voorhees, M.J. Miksis, S.H. Davis, and H. Wong, Capillary instabilities in solid thin films: lines. J. Appl. Phys. 79 (1996) 7604. [CrossRef] [Google Scholar]
  14. H. Wong, M.J. Miksis, P.W. Voorhees and S.H. Davis, Universal pinch off of rods by capillarity-driven surface diffusion. Scripta Mater. 39 (1998) 55–60. [CrossRef] [Google Scholar]
  15. D.J. Kirill, S.H. Davis, M.J. Miksis and P.W. Voorhees, Morphological instability of a whisker. Proc. R. Soc. Lond. A 455 (1999) 3825–3844. [CrossRef] [MathSciNet] [Google Scholar]
  16. K.F. Gurski and G.B. McFadden, The effect of anisotropic surface energy on the Rayleigh instability. Proc. R. Soc. Lond. A 459 (2003) 2575–2598. [CrossRef] [MathSciNet] [Google Scholar]
  17. K.F. Gurski, G.B. McFadden and M.J. Miksis, The effect of contact lines on the Rayleigh instability with anisotropic surface energy. SIAM J. Appl. Math. 66 (2006) 1163–1187. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Wang, O. Tschukin, T. Leisner, H. Zhang, B. Nestler, M. Selzer, G.C. Marques and J. Aghassi-Hagmann, Morphological stability of rod-shaped continuous phases. Acta Materialia 192 (2020) 20–29. [CrossRef] [Google Scholar]
  19. V. Gorshkov and V. Pivman, Kinetic Monte Carlo model of breakup of nanowires into chains of nanoparticles. J. Appl. Phys. 122 (2017) 204301. [CrossRef] [Google Scholar]
  20. M. Khenner, Effect of electromigration on onset of morphological instability of a nanowire. J. Eng. Math. 140 (2023) 6. [CrossRef] [Google Scholar]
  21. M. Khenner, Nanowire breakup via a morphological instability enhanced by surface electromigration. Model. Simul. Mater. Sci. Eng. 32 (2024) 015003. [CrossRef] [Google Scholar]
  22. T.F. Marinis, R.F. Sekerka, F.D. Lemkey, H.E. Cline and M. McLean, In-Situ Composites IV. Elsevier, NY (1982) 315–327. [Google Scholar]
  23. M.P. Gelfand and R.M. Bradley, One dimensional conservative surface dynamics with broken parity: Arrested collapse versus coarsening. Phys. Lett. A 379 (2015) 199–205. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Xu, P.F. Li and Y. Lu, In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. Nano Res. 11 (2018) 625. [CrossRef] [Google Scholar]
  25. S. Karim, M.E. Toimil-Molares, A.G. Balogh, W. Ensinger, T.W. Cornelius, E.U. Khan and R. Neumann, Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17 (2006) 5954–5959. [CrossRef] [Google Scholar]
  26. M. Schimschak and J. Krug, Surface electromigration as a moving boundary value problem. Phys. Rev. Lett. 78 (1997) 278. [CrossRef] [Google Scholar]
  27. L. Du and D. Maroudas, Optimization of electrical treatment strategy for surface roughness reduction in conducting thin films. J. Appl. Phys. 124 (2018) 125302. [CrossRef] [Google Scholar]
  28. R.M. Bradley, Electromigration-induced shock waves on metal thin films. Appl. Phys. Lett. 93 (2008) 213105. [CrossRef] [Google Scholar]
  29. R.M. Bradley, Shock waves on current-carrying metal thin films. Phys. Rev. B 79 (2009) 075403. [CrossRef] [Google Scholar]
  30. M. Yagi and J. Shirakashi, Evolution of local temperature in Au nanowires during feedback-controlled electromigration observed by atomic force microscopy. Appl. Phys. Lett. 110 (2017) 203105. [CrossRef] [Google Scholar]
  31. R.S. Timsit, Remarks on the thermal stability of an Ohmic-heated nanowire. J. Appl. Phys. 123 (2018) 175105. [CrossRef] [Google Scholar]
  32. H. Suga, H. Suzuki, K. Otsu, T. Abe, Y. Umeta, K. Tsukagoshi, T. Sumiya, H. Shima, H. Akinaga and Y. Naitoh, Feedback electromigration assisted by alternative voltage operation for the fabrication of facet-edge nanogap electrodes. ACS Appl. Nano Mater. 3 (2020) 4077–4083. [CrossRef] [Google Scholar]
  33. S. Karim, M.E. Toimil-Molares, W. Ensinger, A.G. Balogh, T.W. Cornelius, E.U Khan and R. Neumann, Influence of crystallinity on the Rayleigh instability of gold nanowires. J. Phys. D: Appl. Phys. 400 (2007) 3767–3770. [CrossRef] [Google Scholar]
  34. R.M. Bradley, private communication. [Google Scholar]
  35. A.J. Bernoff and A.L. Bertozzi, Singularities in a modified Kuramoto–Sivashinsky equation describing interface motion for phase transition. Physica D 85 (1995) 375–404. [CrossRef] [MathSciNet] [Google Scholar]
  36. A.J. Bernoff and T.P. Witelski, Stability and dynamics of self-similarity in evolution equations. J. Eng. Math. 66 (2010) 11–31. [CrossRef] [Google Scholar]
  37. F. Balty, A. Baret, A. Silhanek and N.D. Nguyen, Insight into the morphological instability of metallic nanowires under thermal stress. J. Colloid Int. Sci. 673 (2024) 574–582. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.