Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 21 | |
Section | Mathematical methods | |
DOI | https://doi.org/10.1051/mmnp/2025007 | |
Published online | 17 March 2025 |
- A. Dragulescu and V.M. Yakovenko, Statistical mechanics of money. Eur. Phys. J. B 17 (2000) 723–729. [CrossRef] [Google Scholar]
- R. Kutner, M. Ausloos, D. Grech, T. Di Matteo, C. Schinckus and H.E. Stanley, Econophysics and sociophysics: Their milestones & challenges. Physica A 516 (2019) 240–253. [CrossRef] [Google Scholar]
- L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. OUP Oxford (2013). [Google Scholar]
- E.J. de Area Leão Pereira, M.F. da Silva and H.B.B. de Pereira, Econophysics: past and present. Physica A 473 (2017) 251–261. [CrossRef] [MathSciNet] [Google Scholar]
- G. Savoiu, Econophysics: Background and Applications in Economics, Finance, and Sociophysics. Academic Press (2013). [Google Scholar]
- B.M. Boghosian, A. Devitt-Lee, M. Johnson, J. Li, J.A. Marcq and H. Wang, Oligarchy as a phase transition: the effect of wealth-attained advantage in a Fokker–Planck description of asset exchange. Physica A 476 (2017) 15–37. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao, S. Motsch, A. Reamy and R. Theisen, Asymptotic flocking for the three-zone model. Math. Biosci. Eng. 17 (2020) 7692–7707. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao, K-averaging agent-based model: propagation of chaos and convergence to equilibrium. J. Statist. Phys. 184 (2021) 1–19. [CrossRef] [Google Scholar]
- F. Cao and R. Cortez, Fractal opinions among interacting agents. arXiv preprint arXiv:2408.01624 (2024). [Google Scholar]
- F. Cao and S. Reed, The iterative persuasion-polarization opinion dynamics and its mean-field analysis. arXiv preprint arXiv:2408.00148 (2024). [Google Scholar]
- F. Cao and J. Yang, Quantitative convergence guarantees for the mean-field dispersion process. arXiv preprint arXiv:2406.05043 (2024). [Google Scholar]
- F. Cao and S. Motsch, Sticky dispersion on the complete graph: a kinetic approach. arXiv preprint arXiv:2404.08868 (2024). [Google Scholar]
- E. Carlen, P. Degond and B. Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models. Math. Models Methods Appl. Sci. 23 (2013) 1339–1376. [CrossRef] [MathSciNet] [Google Scholar]
- S. Motsch and D. Peurichard, From short-range repulsion to Hele-Shaw problem in a model of tumor growth. J. Math. Biol. 76 (2008) 205–234. [Google Scholar]
- F. Cao and S. Motsch, Uncovering a two-phase dynamics from a dollar exchange model with bank and debt. SIAM J. Appl. Math. 83 (2023) 1872–1891. [CrossRef] [MathSciNet] [Google Scholar]
- N. Xi, N. Ding and Y. Wang, How required reserve ratio affects distribution and velocity of money. Physica A 357 (2005) 543–555. [CrossRef] [Google Scholar]
- N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs (models with debts). J. Statist. Phys. 176 (2019) 1115–1137. [CrossRef] [Google Scholar]
- A.-S. Sznitman, Topics in propagation of chaos, in Ecole d’été de probabilités de Saint-Flour XIX—1989. Springer (1991) 165–251. [Google Scholar]
- F. C. Motsch and S. Motsch, Derivation of wealth distributions from biased exchange of money. Kinet. Related Models 16 (2023) 764–794. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao, P.-E. Jabin and S. Motsch, Entropy dissipation and propagation of chaos for the uniform reshuffling model. Math. Models Methods Appl. Sci. 33 (2023) 829–875. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao, Explicit decay rate for the Gini index in the repeated averaging model. Math. Methods Appl. Sci. 46 (2023) 3583–3596. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cao and P.-E. Jabin, From interacting agents to Boltzmann-Gibbs distribution of money. Nonlinearity 37 (2024) 125020. [CrossRef] [Google Scholar]
- F. Cao and R. Cortez, Uniform propagation of chaos for a dollar exchange econophysics model. Eur. J. Appl. Math. (2024) 1–13. [Google Scholar]
- E. Heinsalu and P. Marco, Kinetic models of immediate exchange. Eur. Phys. J. B 87 (2014) 1–10. [CrossRef] [Google Scholar]
- N. Lanchier and S. Reed, Rigorous results for the distribution of money on connected graphs. J. Statist. Phys. 171 (2018) 727–743. [CrossRef] [Google Scholar]
- D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies. J. Statist. Phys. 130 (2008) 1087–1117. [CrossRef] [Google Scholar]
- F. Cao and N.F. Marshall, From the binomial reshuffling model to Poisson distribution of money. Netw. Heterogeneous Media 19 (2024) 24–43. [CrossRef] [MathSciNet] [Google Scholar]
- B.M. Boghosian, M. Johnson and J.A. Marcq, An H theorem for Boltzmann’s equation for the Yard–Sale model of asset exchange: the Gini coefficient as an H functional. J. Statist. Phys. 161 (2015) 1339–1350. [CrossRef] [Google Scholar]
- A. Chakraborti and B.K. Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. Eur. Phys. J. B 17 (2000) 167–170. [CrossRef] [Google Scholar]
- A. Chatterjee, B.K. Chakrabarti and S. Sekhar Manna, Pareto law in a kinetic model of market with random saving propensity. Physica A 335 (2004) 155–163. [CrossRef] [MathSciNet] [Google Scholar]
- D.W. Cohen and B.M. Boghosian, Bounding the approach to oligarchy in a variant of the yard-sale model. arXiv preprint arXiv:2310.16098 (2023). [Google Scholar]
- B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78 (2008) 056103. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. Torregrossa and G. Toscani, Wealth distribution in presence of debts. A Fokker-Planck description. arXiv preprint arXiv:1709.09858 (2017). [Google Scholar]
- N. Lanchier, Rigorous proof of the Boltzmann–Gibbs distribution of money on connected graphs. J. Statist. Phys. 167 (2017) 160–172. [CrossRef] [Google Scholar]
- N. Lanchier and S. Reed, The role of cooperation in spatially explicit economical systems. Adv. Appl. Probab. 50 (2018) 743–758. [CrossRef] [MathSciNet] [Google Scholar]
- M. Merle and J. Salez, Cutoff for the mean-field zero-range process. Ann. Probab. 47 (2019) 3170–3201. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.