Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 22 | |
Section | Mathematical physiology and medicine | |
DOI | https://doi.org/10.1051/mmnp/2025002 | |
Published online | 25 April 2025 |
- M. Aletti, J.-F. Gerbeau and D. Lombardi, A simplified fluid–structure model for arterial flow. Application to retinal hemodynamics. Comput. Methods Appl. Mech. Eng. 306 (2016) 77–94. [CrossRef] [Google Scholar]
- P. Chen, A. Quarteroni and G. Rozza, Simulation-based uncertainty quantification of human arterial network hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29 (2013) 698–721. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- L. Formaggia, D. Lamponi and A. Quarteroni, One-dimensional models for blood flow in arteries. J. Eng. Math. 47 (2003) 251–276. [CrossRef] [Google Scholar]
- R. Torii, M. Oshima, T. Kobayashi, K. Takagi and T.E. Tezduyar, Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput. Methods Appl. Mech. Eng. 198 (2009) 3613–3621. [CrossRef] [Google Scholar]
- O. Miraucourt, S. Salmon, M. Szopos and M. Thiriet, Blood flow in the cerebral venous system: modeling and simulation. Comput. Methods Biomech. Biomed. Eng. 20 (2017) 471–482. [CrossRef] [PubMed] [Google Scholar]
- P. Mollo, Développement et analyse du modèle numérique du système crânio-spinal, these de doctorat, Reims (2023). [Google Scholar]
- L.O. Müller and E.F. Toro, Enhanced global mathematical model for studying cerebral venous blood flow. J. Biomech. 47 (2014) 3361–3372. [CrossRef] [Google Scholar]
- V.M. Pereira, N.M. Cancelliere, M. Najafi, D. MacDonald, T. Natarajan, I. Radovanovic, T. Krings, J. Rutka, P. Nicholson and D.A. Steinman, Torrents of torment: turbulence as a mechanism of pulsatile tinnitus secondary to venous stenosis revealed by high-fidelity computational fluid dynamics. J. Neurointerv. Surg. 13 (2021) 732–737. [CrossRef] [PubMed] [Google Scholar]
- E.F. Toro, M. Celant, Q. Zhang, C. Contarino, N. Agarwal, A. Linninger and L.O. Müller, Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: mathematical models, numerical methods and applications. Int. J. Numer. Methods Biomed. Eng. 38 (2022) e3532. [CrossRef] [PubMed] [Google Scholar]
- S. Stoquart-ElSankari, P. Lehmann, A. Villette, M. Czosnyka, M.-E. Meyer, H. Deramond and O. Balédent, A phase-contrast MRI study of physiologic cerebral venous flow. J. Cerebral Blood Flow Metab. 29 (2009) 1208–1215. Publisher: SAGE Publications Ltd STM. [CrossRef] [PubMed] [Google Scholar]
- B. Mokri, The Monro–Kellie hypothesis. Neurology 56 (2001) 1746–1748. [CrossRef] [PubMed] [Google Scholar]
- M.H. Wilson, Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J. Cerebral Blood Flow Metab. 36 (2016) 1338–1350. [CrossRef] [PubMed] [Google Scholar]
- M. Nedergaard and S.A. Goldman, Glymphatic failure as a final common pathway to dementia. Science (New York, N.Y.) 370 (2020) 50–56. [CrossRef] [PubMed] [Google Scholar]
- M.-Y. Jaffrin and F. Goubel, Biomécanique des fluides et des tissus. Masson, Paris Milan Barcelone (1998). [Google Scholar]
- N. Alperin, S.H. Lee, A. Sivaramakrishnan and S.G. Hushek, Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J. Magn. Resonance Imaging 22 (2005) 591–596. [CrossRef] [PubMed] [Google Scholar]
- P. Liu, S. Fall and O. Balédent, Use of real-time phase-contrast MRI to quantify the effect of spontaneous breathing on the cerebral arteries. NeuroImage 258 (2022) 119361. [CrossRef] [PubMed] [Google Scholar]
- M. Prokop, H.O. Shin, A. Schanz and C.M. Schaefer-Prokop, Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17 (1997) 433–451. [CrossRef] [PubMed] [Google Scholar]
- G. Pagé, Quantification et caractérisation des écoulements sanguins dans l’arborescence vasculaire de la région cervico-faciale par Imagerie par Résonance Magnétique de flux: évaluation et application, these de doctorat, Amiens (2016). [Google Scholar]
- G.L. Streeter, The development of the venous sinuses of the duramater in the human embryo. Am. J. Anat. 18 (1915) 145–178. [CrossRef] [Google Scholar]
- J.M. Das and Y. Al Khalili, Jugular Foramen Syndrome, in StatPearls. StatPearls Publishing, Treasure Island (FL) (2023). [Google Scholar]
- H.K. Park, H.G. Bae, S.K. Choi, J.C. Chang, S.J. Cho, B.J. Byun and K.B. Sim, Morphological study of sinus flow in the confluence of sinuses. Clin. Anat. 21 (2008) 294–300. [CrossRef] [PubMed] [Google Scholar]
- V. Chabannes, A. Ancel, J. Jomier and C. Prud’Homme, AngioTK: An Open Platform to reconstruct vessels from MRI images and simulate blood flows to ultimately provide Virtual Angiographies. Rencontre Inria Industrie Santé (2015). [Google Scholar]
- O. Merveille, B. Naegel, H. Talbot, L. Najman and N. Passat, 2D filtering of curvilinear structures by ranking the orientation responses of path operators (RORPO). Image Process. Line 7 (2017) 246–261. [CrossRef] [Google Scholar]
- J. Lamy, O. Merveille, B. Kerautret, N. Passat and A. Vacavant, Vesselness filters: a survey with benchmarks applied to liver imaging, in International Conference on Pattern Recognition (ICPR). Milan, Italy (2020) 3528–3535. [Google Scholar]
- A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper and R. Kikinis, 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30 (2012) 1323–1341. [CrossRef] [Google Scholar]
- L. Antiga, M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi and D.A. Steinman, An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46 (2008) 1097–1112. [CrossRef] [PubMed] [Google Scholar]
- R. Izzo, D. Steinman, S. Manini and L. Antiga, The vascular modeling toolkit: a python library for the analysis of tubular structures in medical images. J. Open Source Softw. 3 (2018) 745. [CrossRef] [Google Scholar]
- L.O. Müller and E.F. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 681–725. [CrossRef] [MathSciNet] [Google Scholar]
- G. Taubin et al., Linear anisotropic mesh filtering. Res. Rep. RC22213 IBM 1 (2001). [Google Scholar]
- C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. [Google Scholar]
- G. Balarac, F. Basile, P. Bénard, F. Bordeu, J.-B. Chapelier, L. Cirrottola, G. Caumon, C. Dapogny, P. Frey, A. Froehly, G. Ghigliotti, R. Laraufie, G. Lartigue, C. Legentil, R. Mercier, V. Moureau, C. Nardoni, S. Pertant and M. Zakari, Tetrahedral remeshing in the context of large-scale numerical simulation and high performance computing. Math. Action 11 (2022) 129–164. [CrossRef] [Google Scholar]
- C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Computat. Phys. 262 (2014) 358–378. [CrossRef] [Google Scholar]
- C. Dobrzynski and P. Frey, Anisotropic Delaunay mesh adaptation for unsteady simulations, in 17th international Meshing Roundtable, United States (2008) 177–194. [Google Scholar]
- O. Balédent, M.-C. Henry-Feugeas and I. Idy-Peretti, Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest. Radiol. 36 (2001) 368–377. [CrossRef] [PubMed] [Google Scholar]
- L. Formaggia, A. Quarteroni and A. Veneziani, eds., Cardiovascular Mathematics. Springer Milan, Milano (2009). [Google Scholar]
- M. Thiriet, Cell and tissue organization in the circulatory and ventilatory systems, Vol. 1 of Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems. Springer (2011). [Google Scholar]
- M. Thiriet, Biology and Mechanics of Blood Flows. Springer, New York, NY (2008). [Google Scholar]
- O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38 (1982) 309–332. [CrossRef] [Google Scholar]
- A. Quarteroni, Numerical Models for Differential Problems, Vol. 16 of MS&A. Springer International Publishing, Cham (2017). [CrossRef] [Google Scholar]
- C. Grandmont and S. Martin, Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows. ESAIM: Math. Model. Numer. Anal. 55 (2021) 2365–2419. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Math. Model. Numer. Anal. 8 (1974) 129–151. [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Vol. 5 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg (1986). [Google Scholar]
- F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
- J. Ekstedt, CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J. Neurol. Neurosurg. Psychiatry 41 (1978) 345–353. [CrossRef] [PubMed] [Google Scholar]
- J. Fouchet-Incaux, Artificial boundaries and formulations for the incompressible Navier–Stokes equations: applications to air and blood flows. SeMA J. 64 (2014) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
- A.A. Domogo, P. Reinstrup and J.T. Ottesen, Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form. J. Theor. Biol. 564 (2023) 111451. [CrossRef] [Google Scholar]
- M. Unnerbäck, J.T. Ottesen and P. Reinstrup, Validation of a mathematical model for understanding intracranial pressure curve morphology. J. Clin. Monitor. Comput. 34 (2020) 469–481. [CrossRef] [PubMed] [Google Scholar]
- P. Mollo, G. Dollé, S. Salmon and O. Baledent, Accurate Cerebral Blood Flow Simulations Compare to Real Data MMNP (2025). https://doi.org/10.5281/zenodo.11032278. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.