Issue
Math. Model. Nat. Phenom.
Volume 20, 2025
Special Issue to honour Vitaly's work
Article Number 12
Number of page(s) 38
DOI https://doi.org/10.1051/mmnp/2024024
Published online 14 May 2025
  1. D.J. Gubler, Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 4 (1998) 442. [Google Scholar]
  2. S.C. Weaver and W.K. Reisen, Present and future arboviral threats. Antiviral Res. 85 (2010) 328-345. [CrossRef] [Google Scholar]
  3. World Health Organization, Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2020). Accessed on: 2024-05-21. [Google Scholar]
  4. S. Altizer, R.S. Ostfeld, P.T. Johnson et al., Climate change and infectious diseases: from evidence to a predictive framework. Science 341 (2013) 514-519. [CrossRef] [PubMed] [Google Scholar]
  5. K.L. Gage and T.R. Burkot, Global trends in emerging infectious diseases. Nature 451 (2008) 990-993. [CrossRef] [PubMed] [Google Scholar]
  6. L. Esteva and C. Vargas, Analysis of a dengue disease transmission model. Math. Biosci. 150 (1998) 131-151. [CrossRef] [Google Scholar]
  7. G.A. Ngwa and W.S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32 (2000) 747-763. [CrossRef] [Google Scholar]
  8. C. Wang and J. Wang, Analysis of a malaria epidemic model with age structure and spatial diffusion. Zeitsch. Angew. Math. Phys. 72 (2021) 1-27. [CrossRef] [Google Scholar]
  9. B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations. SIAM J. Appl. Math. 74 (2014) 743-770. [CrossRef] [MathSciNet] [Google Scholar]
  10. K.L. Schaber, T.A. Perkins, A.L. Lloyd et al., Disease-driven reduction in human mobility influences human- mosquito contacts and dengue transmission dynamics. PLoS Computat. Biol. 17 (2021) e1008627. [CrossRef] [Google Scholar]
  11. S.T. Stoddard, A.C. Morrison, G.M. Vazquez-Prokopec et al., The role of human movement in the transmission of vector-borne pathogens. PLOS Negl. Trop. Dis. 3 (2009) e481. [CrossRef] [Google Scholar]
  12. C. Favier, D. Schmit, C.D. Muller-Graf, et al. Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc. Roy. Soc. B: Biol. Sci. 272 (2005) 1171-1177. [Google Scholar]
  13. W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71 (2011) 147-168. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Wu and X. Zhao, A reaction-diffusion model of vector-borne disease with periodic delays. J. Nonlinear Sci. 29 (2019) 29-64. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Lewis, J. Renclawowicz and P.V. den Driessche, Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68 (2006) 3-23. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. G. Lin, X. Wang and X. Zhao, Propagation phenomena of a vector-host disease model. J. Differ. Equ. 378 (2024) 757-791. [CrossRef] [Google Scholar]
  17. Z. Lin and H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75 (2017) 1381-1409. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. Vol. 140 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1994). Translated from the Russian manuscript by James F. Heyda. [CrossRef] [Google Scholar]
  19. K. Wang, H. Zhao and H. Wang, Traveling waves for a diffusive mosquito-borne epidemic model with general incidence. Zeitsch. Angew. Math. Phys. 73 (2022) 31. [CrossRef] [Google Scholar]
  20. K. Wang, H. Zhao, H. Wang et al., Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed delay. J. Dyn. Differ. Equ. 35 (2023) 3149-3185. [CrossRef] [Google Scholar]
  21. X. Wang, G. Lin and S. Ruan, Spreading speeds and traveling wave solutions of diffusive vector-borne disease models without monotonicity. Proc. Roy. Soc. Edinb. Sect. A: Math. 153 (2023) 137-166. [CrossRef] [Google Scholar]
  22. D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics: Ford Foundation Sponsored Program at Tulane University, January to May, 1974. Springer (2006) 5-49. [Google Scholar]
  23. D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30 (1978) 33-76. [CrossRef] [MathSciNet] [Google Scholar]
  24. O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differ. Equ. 33 (1979) 58-73. [CrossRef] [Google Scholar]
  25. S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal. 40 (2008) 776-789. [CrossRef] [MathSciNet] [Google Scholar]
  26. X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60 (2007) 1-40. [CrossRef] [Google Scholar]
  27. X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259 (2010) 857-903. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Differ. Equ. 260 (2016) 8316-8357. [CrossRef] [Google Scholar]
  29. A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type. Calc. Var. Part. Differ. Equ. 58 (2019) 1-34. [CrossRef] [Google Scholar]
  30. A. Ducrot, T. Giletti, J. Guo et al., Asymptotic spreading speeds for a predator-prey system with two predators and one prey. Nonlinearity 34 (2021) 669. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Wang, Z. Feng, Z. Wang et al., Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Commun. Pure Appl. Anal. 21 (2022). [Google Scholar]
  32. S. Wang and L. Zhang, Spatiotemporal propagation of a time-periodic reaction-diffusion SI epidemic model with treatment. Stud. Appl. Math. 152 (2024) 342-375. [CrossRef] [MathSciNet] [Google Scholar]
  33. L. Zhao, Z. Wang and L. Zhang, Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment. Zeitsch. Angew. Math. Phys. 72 (2021) 142. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Zhao, R. Yuan, Z. Ma et al., Spreading speeds for the predator-prey system with nonlocal dispersal. J. Differ. Equ. 316 (2022) 552-598. [CrossRef] [Google Scholar]
  35. S. Wu, H. Zhao, X. Zhang et al., Spatial dynamics for a time-periodic epidemic model in discrete media. J. Differ. Equ. 374 (2023) 699-736. [CrossRef] [Google Scholar]
  36. X. Yang and G. Lin, Spreading speeds and traveling waves for a time periodic DS-IA epidemic model. Nonlinear Anal. Real World Applic. 66 (2022) 103515. [CrossRef] [Google Scholar]
  37. C.J. Carlson, E. Bannon, E. Mendenhall et al., Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19 (2023) 20220365. [CrossRef] [Google Scholar]
  38. J. Wu, Z. Lun, A.A. James et al., Dengue fever in mainland China. Am. J. Trop. Med. Hyg. 83 (2010) 664. [CrossRef] [PubMed] [Google Scholar]
  39. H. Berestycki, O. Diekmann, C.J. Nagelkerke et al., Can a species keep pace with a shifting climate? Bull. Math. Biol. 71 (2009) 399-429. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  40. H. Hu and X. Zou, Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145 (2017) 4763-4771. [CrossRef] [Google Scholar]
  41. B. Li, S. Bewick, J. Shang et al., Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74 (2014) 1397-1417. [CrossRef] [MathSciNet] [Google Scholar]
  42. V. Volpert and S. Petrovskii, Reaction-diffusion waves in biology. Phys. Life Rev. 6 (2009) 267-310. [CrossRef] [Google Scholar]
  43. W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20 (2008) 699-717. [CrossRef] [Google Scholar]
  44. L. Girardin and I. Mazari, Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems. To appear in Memoires de la Societe Mathematique de France. [Google Scholar]
  45. L. Girardin, Persistence, extinction and spreading properties of non-cooperative Fisher-KPP systems in space-time periodic media. SIAM Journal on Mathematical Analysis, 57 (2025) 233-261. [CrossRef] [MathSciNet] [Google Scholar]
  46. Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265 (2013) 2089-2142. [CrossRef] [MathSciNet] [Google Scholar]
  47. G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J. Math. Pures Appl. 98 (2021) 633-653. [Google Scholar]
  48. N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections. Calc. Var. Part. Differ. Equ. 56 (2017) 1-36. [CrossRef] [Google Scholar]
  49. H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media. J. Funct. Anal. 255 (2008) 2146-2189. [CrossRef] [MathSciNet] [Google Scholar]
  50. D. Posny and J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl. Math. Computat. 242 (2014) 473-490. [CrossRef] [Google Scholar]
  51. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer Science & Business Media (2012). [Google Scholar]
  52. A. Ducrot and P. Magal, Integrated semigroups and parabolic equations. Part II: semilinear problems. Ann. Scuola Normale Superiore Di Pisa, Classe di Scienze, XX (2020) 1071-1111. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.