Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
Special Issue to honour Vitaly's work
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 28 | |
DOI | https://doi.org/10.1051/mmnp/2025004 | |
Published online | 14 May 2025 |
- B. Elbetch, T. Benzekri, D. Massart and T. Sari, The multi-patch logistic equation. Discrete Continuous Dyn. Syst. Ser. B 26 (2020) 6405-6424. [Google Scholar]
- B. Elbetch, T. Benzekri, D. Massart and T. Sari, The multi-patch logistic equation with asymmetric migration. Rev. Integr. Temas Mater. 40 (2022) 25-57. [Google Scholar]
- B. Elbetch, Effect of dispersal in Two-patch environment with Richards growth on population dynamics. J. Innov. Appl. Math. Comput. Sci. 2 (2022) 41-68. [CrossRef] [Google Scholar]
- B. Elbetch and A. Moussaoui, Nonlinear diffusion in the multi-patch logistic model. J. Math. Biol. 87 (2023) 1-32. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- B. Elbetch, Effect of dispersal in single-species discrete diffusion systems with source-sink patches. Math. Appl. 51 (2023) 51-97. [Google Scholar]
- B. Elbetch, Effects of rapid population growth on total biomass in Multi-patch environment. Differ. Equ. Appl. 15 (2023) 323-359. [Google Scholar]
- B. Elbetch, Generalized logistic equation on networks. Comptes Rendus Math. 361 (2023) 911-934. [CrossRef] [Google Scholar]
- P. Auger, B. Kooi and A. Moussaoui, Increase of maximum sustainable yield for fishery in two patches with fast Migration. Ecol. Model. 467 (2022) 109898. [CrossRef] [Google Scholar]
- R. Arditi, C. Lobry and T. Sari, In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor. Popul. Biol. 106 (2015) 45-59. [CrossRef] [Google Scholar]
- R. Arditi, C. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol. 120 (2018) 11-15. [CrossRef] [Google Scholar]
- D.L. DeAngelis, C.C. Travis and W.M. Post, Persistence and stability of seed-dispersel species in a patchy environment. Theor. Popul. Biol. 16 (1979) 107-125. [CrossRef] [Google Scholar]
- D.L. DeAngelis and B. Zhang, Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 3087-3104. [MathSciNet] [Google Scholar]
- D.L. DeAngelis, W.-M. Ni and B. Zhang, Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems. Theor. Ecol. 9 (2016) 443-453. [CrossRef] [Google Scholar]
- H.I. Freedman and P. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J. Appl. Math. 32 (1977) 631-648. [CrossRef] [MathSciNet] [Google Scholar]
- H.I. Freedman and Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. Theory Methods Appl. 13 (1989) 993-1002. [CrossRef] [Google Scholar]
- J.-C. Poggiale, P. Auger, D. Nerini, C. Mante and F. Gilbert, Global production increased by a spatial heterogeneity in a population dynamics model. Acta Biotheoretica 53 (2005) 359-370. [CrossRef] [PubMed] [Google Scholar]
- J. Arino, N. Bajeux and S. Kirkland, Number of source patches required for population persistence in a source-sink metapopulation with explicit movement. Bull. Math. Biol. 81 (2019) 1916-1942. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H. Wu, Y. Wang, Y. Li and D.L. DeAngelis, Dispersal asymmetry in a two-patch system with source-sink populations. Theor. Popul. Biol. 131 (2019) 54-65. [Google Scholar]
- D. Gao , How does dispersal affect the infection size? SIAM J. Appl. Math. 80 (2020) 2144-2169. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gao and S. Ruan, A multipatch malaria model with logistic growth. SIAM J. Appl. Math. 72 (2012) 819-841. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- D. Gao and C.P. Dong, Fast diffusion inhibits disease outbreak. Proc. Am. Math. Soc. 148 (2020) 1709-1722. [Google Scholar]
- M. Benaim, C. Lobry, T. Sari and E. Strickler. When can a population spreading across sink habitats persist ? J. Math. Biol. 88 (2024) 19. [CrossRef] [PubMed] [Google Scholar]
- M. Benaim, C. Lobry, T. Sari and E. Strickler, Untangling the role of temporal and spatial variations in persistence of populations. Theor. Popul. Biol. 154 (2023) 1-26. [CrossRef] [Google Scholar]
- G. Katriel, Dispersal-induced growth in a time-periodic environment. J. Math. Biol. 85 (2022) 24. [CrossRef] [PubMed] [Google Scholar]
- P. Auger, C. Lett, A. Moussaoui and S. Pioch, Optimal number of sites in artificial pelagic multisite fisheries. Can. J. Fisher. Aquat. Sci. 67 (2010) 296-303. [CrossRef] [Google Scholar]
- M. Bensenane, A. Moussaoui and P. Auger, On the optimal size of marine reserves. Acta Biotheoretica 61 (2013) 109-118. [CrossRef] [PubMed] [Google Scholar]
- R. Hilborn, F. Michel and G.A. DeLeo, Integrating marine protected areas with catch regulation. Can. J. Fisher. Aquat. Sci. 63 (2006) 642-649. [CrossRef] [Google Scholar]
- A. Moussaoui, M. Bensenane, P. Auger and A. Bah, On the optimal size and number of reserves in a multi-site fishery model. J. Biol. Syst. 22 (2014) 1-17. [CrossRef] [Google Scholar]
- A. Moussaoui, P. Auger and C. Lett, Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Math. Biosci. Eng. 8 (2011) 769-783. [CrossRef] [MathSciNet] [Google Scholar]
- B. Elbetch and A. Moussaoui, Enhancing maximum sustainable yield in a patchy prey-predator environment. Ecol. Complex. 60 (2024) 101107. [CrossRef] [Google Scholar]
- C.W. Clark, Mathematical Bioeconomis. The Optimal Management of Renewable Resources. 2nd edn. John Wiley and Sons, Inc., New York (1990). [Google Scholar]
- D. Nguyen Ngoc, T. Nguyen Huu and P. Auger, Connectivity between two fishing sites can lead to an emergence phenomenon related to Maximum Sustainable Yield. J. Theor. Biol. 595 (2024) 111913. [CrossRef] [Google Scholar]
- R. Bravo de la Parra, J.-C. Poggiale and P. Auger, The effect of connecting sites in the environment of a harvested population. Math. Model. Nat. Phenom. 18 (2023). [Google Scholar]
- A.N. Tikhonov, Systems of differential equations containing small parameters in the derivatives. Mat. Sb. (N.S.) 31 (1952) 575-586. [Google Scholar]
- W.R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger Publishing Company, Huntington, NY (1976). [Google Scholar]
- H.I. Freedman, Deterministic Mathematical Models in Population Ecology. M. Dekker, New York (1980). [Google Scholar]
- M. Kot, Elements of Mathematical Ecology. Cambridge University Press (2001). [Google Scholar]
- S.B. Hsu, S.P. Hubbell and P. Waltman, Competing predators. SIAM J. Appl. Math. 35 (1978) 617-625. [CrossRef] [MathSciNet] [Google Scholar]
- K.S. Cheng, Uniqueness of a limit cycle for a predator—prey system. SIAM J. Math. Anal. 12 (1981) 541-548. [CrossRef] [MathSciNet] [Google Scholar]
- L.P. Liou and K.S. Cheng, On the uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 19 (1988) 867-878. [CrossRef] [MathSciNet] [Google Scholar]
- B. Ghosh, T.K. Kar and T. Legovic, Relationship between exploitation, oscillation, MSY and extinction. Math. Biosci. 256 (2014) 1-9. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York (1980). [Google Scholar]
- Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments. Math. Biosci. 120 (1994) 77-98. [CrossRef] [MathSciNet] [Google Scholar]
- H.L. Smith and P. Waltman, The Theory of the Chemostat. Cambridge Studies in Mathematical Biology (1995). [CrossRef] [Google Scholar]
- P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sanchez and T. Nguyen Huu, Aggregation of variables and applications to population dynamics, in Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, Vol. 1936, edited by P. Magal, S. Ruan. Math. Biosci. Subseries. Springer, Berlin (2008) 209-263. [Google Scholar]
- P. Auger, R. Bravo de la Parra, J.C. Poggiale, E. Sanchez and L. Sanz, Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life. Rev. 5 (2008) 79-105. [CrossRef] [Google Scholar]
- R. Kon and D. Kumar, Stability of Rosenzweig-MacArthur models with non-diffusive dispersal on non-regular networks. Theor. Popul. Biol. 150 (2023) 14-22. [CrossRef] [Google Scholar]
- C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases. J. Theoret. Biol. 258 (2009) 550-560. [CrossRef] [MathSciNet] [Google Scholar]
- H. Guo, M.Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can. Appl. Math. Quart. 14 (2006) 259-284. [Google Scholar]
- T. Legovic, J. Klanjscek and S. Gecek, Maximum sustainable yields and species extinction in ecosystems. Ecol. Model. 221 (2011) 1569-1574. [Google Scholar]
- M.L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science (1971) 385-387. [CrossRef] [PubMed] [Google Scholar]
- M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions of predator-prey interactions. Am. Naturalist 97 (1963) 209-223. [CrossRef] [Google Scholar]
- M.B. Schaefer, Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. J. Fish. Res. Board Canada 14 (1957) 669-681. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.