Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 20, 2025
Special Issue to honour Vitaly's work
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/mmnp/2025006 | |
Published online | 14 May 2025 |
- J.K. Miller, K. Elenberg and A. Dubrawski, Forecasting emergence of covid-19 variants of concern. PLoS One 17 (2022) e0264198. [CrossRef] [PubMed] [Google Scholar]
- P. Gupta, V. Gupta, C.M. Singh and L. Singhal, Emergence of covid-19 variants: an update. Cureus 15 (2023). [Google Scholar]
- W. Tong, F. Liu, H. Zheng, C. Liang, Y.-j. Zhou, Y.-f. Jiang, T.-l. Shan, F. Gao, G.-X. Li and G.-z. Tong, Emergence of a pseudorabies virus variant with increased virulence to piglets. Vet. Microbiol. 181 (2015) 236–240. [CrossRef] [Google Scholar]
- A.M. Carabelli, T.P. Peacock, L.G. Thorne, W.T. Harvey, J. Hughes, S.J. Peacock, W.S. Barclay, T.I. De Silva, G.J. Towers and D.L. Robertson, Sars-cov-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21 (2023) 162–177. [Google Scholar]
- A.M. Carabelli, T.P. Peacock, L.G. Thorne, W.T. Harvey, J. Hughes, C.-G.U.C. de Silva Thushan, S.J. Peacock, W.S. Barclay, T.I. de Silva, G.J. Towers, et al., SARS-Cov-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21 (2023) 162–177. [Google Scholar]
- C.W. Tan, W.N. Chia, F. Zhu, B.E. Young, N. Chantasrisawad, S.-H. Hwa, A.Y.-Y. Yeoh, B.L. Lim, W.C. Yap, S.K.M. Pada, et al., SARS-Cov-2 omicron variant emerged under immune selection. Nat. Microbiol. 7 (2022) 1756– 1761. [CrossRef] [Google Scholar]
- S. François, S. Nazki, S. Vickers, H. Fournié, C.M. Perrins, A.J. Broadbent, O.G. Pybus and S.C. Hill. Genetic diversity, recombination and cross-species transmission of a waterbird gammacoronavirus in the wild. J. Gen. Viro., 104 (2023) 001883. [Google Scholar]
- R.N. Thompson, E. Southall, Y. Daon, F.A. Lovell-Read, S. Iwami, C.P. Thompson and U. Obolski, The impact of cross-reactive immunity on the emergence of sars-cov-2 variants. Front. Immunol. 13 (2023) 1049458. [CrossRef] [Google Scholar]
- A. Vié, Emergence of more contagious covid-19 variants from the interaction of viruses and policy interventions, in Artificial Life Conference Proceedings 33, Vol. 2021. MIT Press, Cambridge, MA, USA (2021) 15. [Google Scholar]
- F. Brauer, P. Van den Driessche, J. Wu. and L.J. Allen, Mathematical Epidemiology, Vol. 1945. Springer (2008). [CrossRef] [Google Scholar]
- R. Saxena, M. Jadeja and V. Bhateja, Exploring Susceptible-Infectious-Recovered (SIR) Model for COVID-19 Investigation. Springer (2022). [CrossRef] [Google Scholar]
- V. Volpert, M. Banerjee and S. Petrovskii, On a quarantine model of coronavirus infection and data analysis. Math. Model. Natural Phenomena 15 (2020) 24. [CrossRef] [EDP Sciences] [Google Scholar]
- H. Andersson and T. Britton, Stochastic Epidemic Models and Their Statistical Analysis, Vol. 151. Springer Science & Business Media (2012). [Google Scholar]
- J.P. Medlock, The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. PhD thesis, School of Mathematics, Georgia Institute of Technology (1999). [Google Scholar]
- M. Lu, X.-y. Zheng, W.-n. Jia and C.-z. Tian, Analysis and prediction of improved SEIR transmission dynamics model: taking the second outbreak of COVID-19 in Italy as an example. Front. Public Health 11 (2023). [Google Scholar]
- X. Weng, Q. Chen, T.K. Sathapathi, X. Yin and L. Wang, Impact of school operating scenarios on COVID-19 transmission under vaccination in the us: an agent-based simulation model. Sci. Rep. 13 (2023) 12836. [CrossRef] [Google Scholar]
- A. Bouchnita and A. Jebrane, A hybrid multi-scale model of covid-19 transmission dynamics to assess the potential of non-pharmaceutical interventions. Chaos Solitons Fractals 138 (2020) 109941. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A.E.S. Almocera and E.A. Hernandez-Vargas, Coupling multiscale within-host dynamics and between-host transmission with recovery (sir) dynamics. Math. Biosci. 309 (2019) 34–41. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A.E.S. Almocera, V.K. Nguyen and E.A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases. J. Math. Biol. 77 (2018) 1035–1057. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- J.W. Doran, R.N. Thompson, C.A. Yates and R. Bowness, Mathematical methods for scaling from within-host to population-scale in infectious disease systems. Epidemics, 45 (2023) 100724. [CrossRef] [PubMed] [Google Scholar]
- M.O. Adewole, T.S. Faniran, F.A. Abdullah and M.K. Ali, COVID-19 dynamics and immune response: linking within-host and between-host dynamics. Chaos Solitons Fractals 173 (2023) 113722. [CrossRef] [Google Scholar]
- S. Ghosh, M. Banerjee and V. Volpert, Immuno-epidemiological model-based prediction of further covid-19 epidemic outbreaks due to immunity waning. Math. Model. Natural Phenomena 17 (2022) 9. [CrossRef] [EDP Sciences] [Google Scholar]
- M. Saade, S. Ghosh, M. Banerjee and V. Volpert, Delay epidemic models determined by latency, infection, and immunity duration. Math. Biosci. (2024) 109155. [CrossRef] [Google Scholar]
- A. Bouchnita, K. Bi, S.J. Fox and L.A. Meyers, Projecting omicron scenarios in the us while tracking population-level immunity. Epidemics, 46 (2024) 100746. [CrossRef] [PubMed] [Google Scholar]
- O. Khyar and K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to covid-19 pandemic. Nonlinear Dyn. 102 (2020) 489–509. [CrossRef] [PubMed] [Google Scholar]
- K. Koelle, S. Cobey, B. Grenfell and M. Pascual, Epochal evolution shapes the phylodynamics of interpandemic influenza a (h3n2) in humans. Science 314 (2006) 1898–1903. [CrossRef] [PubMed] [Google Scholar]
- M. Massard, R. Eftimie, A. Perasso and B. Saussereau, A multi-strain epidemic model for covid-19 with infected and asymptomatic cases: application to French data. J. Theor. Biol. 545 (2022) 111117. [CrossRef] [Google Scholar]
- K.W. Okamoto, V. Ong, R. Wallace, R. Wallace and L.F. Chaves, When might host heterogeneity drive the evolution of asymptomatic, pandemic coronaviruses? Nonlinear Dyn. 111 (2023) 927–949. [CrossRef] [PubMed] [Google Scholar]
- M. Luksza and M. Lässig, A predictive fitness model for influenza. Nature 507 (2014) 57–61. [CrossRef] [PubMed] [Google Scholar]
- F. Fabre, J. Montarry, J. Coville, R. Senoussi, V. Simon and B. Moury, Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathogens 8 (2012) e1002654. [CrossRef] [PubMed] [Google Scholar]
- B.T. Grenfell, O.G. Pybus, J.R. Gog, J.L. Wood, J.M. Daly, J.A. Mumford and E.C. Holmes, Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303 (2004) 327–332. [CrossRef] [PubMed] [Google Scholar]
- C.M. Saad-Roy, C.J.E. Metcalf and B.T. Grenfell, Immuno-epidemiology and the predictability of viral evolution. Science 376 (2022) 1161–1162. [CrossRef] [PubMed] [Google Scholar]
- E.M. Volz, K. Koelle and T. Bedford, Viral phylodynamics. PLoS Computat. Biol. 9 (2013) e1002947. [CrossRef] [Google Scholar]
- S. Gupta, N. Ferguson and R. Anderson, Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280 (1998) 912–915. [CrossRef] [PubMed] [Google Scholar]
- N.M. Ferguson, A.P. Galvani and R.M. Bush, Ecological and immunological determinants of influenza evolution. Nature 422 (2003) 428–433. [CrossRef] [PubMed] [Google Scholar]
- N. Bessonov, G. Bocharov, A. Meyerhans, V. Popov and V. Volpert, Existence and dynamics of strains in a nonlocal reaction-diffusion model of viral evolution. SIAM J. Appl. Math. 81 (2021) 107–128. [CrossRef] [MathSciNet] [Google Scholar]
- N. Bessonov, D. Neverova, V. Popov and V. Volpert, Emergence and competition of virus variants in respiratory viral infections. Front. Immunol. 13 (2022). [Google Scholar]
- M. Banerjee, T. Lipniacki, A. d’Onofrio and V. Volpert, Epidemic model with strain-dependent transmission rate. Commun. Nonlinear Sci. Numer. Simul. 114 (2022) 106641. [CrossRef] [Google Scholar]
- N. Bessonov, N. Reinberg, M. Banerjee and V. Volpert, The origin of species by means of mathematical modelling. Acta Biotheor. 66 (2018) 333–344. [CrossRef] [PubMed] [Google Scholar]
- A. Bouchnita, Genotype-structured modeling of variant emergence and its impact on virus infection. Mathematics 13 (2025) 167. [CrossRef] [Google Scholar]
- A. Bouchnita and V. Volpert, Phenotype-structured model of intra-clonal heterogeneity and drug resistance in multiple myeloma. J. Theor. Biol. 576 (2024) 111652. [CrossRef] [Google Scholar]
- R.E. Stace, T. Stiehl, M.A. Chaplain, A. Marciniak-Czochra and T. Lorenzi, Discrete and continuum phenotypestructured models for the evolution of cancer cell populations under chemotherapy. Math. Model. Natural Phenomena 15 (2020) 14. [CrossRef] [EDP Sciences] [Google Scholar]
- K. Koelle, M.A. Martin, R. Antia, B. Lopman and N.E. Dean, The changing epidemiology of SARS-Cov-2. Science 375 (2022) 1116–1121. [CrossRef] [PubMed] [Google Scholar]
- J.S. Lavine, O.N. Bjornstad and R. Antia, Immunological characteristics govern the transition of COVID-19 to endemicity. Science 371 (2021) 741–745. [CrossRef] [PubMed] [Google Scholar]
- E. Howerton, L. Contamin, L.C. Mullany, M. Qin, N.G. Reich, S. Bents, R.K. Borchering, S.-m. Jung, S.L. Loo, C.P. Smith, et al. Evaluation of the us COVID-19 scenario modeling hub for informing pandemic response under uncertainty. Nat. Commun. 14 (2023) 7260. [CrossRef] [Google Scholar]
- L. Meyers, K. Bi, S. Bandekar, A. Bouchnita and S. Fox, Scenario projections for SARS-Cov-2, influenza, and RSV burden in the us, 41 (2023–2024). 2023. [Google Scholar]
- F. Owusu-Dampare and A. Bouchnita, Equitable bivalent booster allocation strategies against emerging SARS-Cov- 2 variants in us cities with large Hispanic communities: the case of El Paso county, Texas. Infect. Dis. Model. 8 (2023) 912–919. [Google Scholar]
- M. Luksza and M. Lässig, A predictive fitness model for influenza. Nature 507 (2014) 57–61. [CrossRef] [PubMed] [Google Scholar]
- A. Bouchnita and B. Djafari-Rouhani, Integrating genomic, climatic, and immunological factors to analyze seasonal patterns of influenza variants. Symmetry 16 (2024) 943. [CrossRef] [Google Scholar]
- S.E. Morris, V.E. Pitzer, C. Viboud, C.J.E. Metcalf, O.N. Bjørnstad and B.T. Grenfell, Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics. J. Roy. Soc. Interface 12 (2015) 20141245. [Google Scholar]
- G. Luo, Z. Yang, C. Zhan and Q. Zhang, Identification of nonlinear dynamical system based on raised-cosine radial basis function neural networks. Neural Process. Lett. 53 (2021) 355–374. [CrossRef] [Google Scholar]
- O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
- S.R. Bandekar and M. Ghosh, Mathematical modeling of COVID-19 in India and its states with optimal control. Model. Earth Syst. Environ. 8 (2022) 2019–2034. [Google Scholar]
- K.E. Clarke, J.M. Jones, Y. Deng, E. Nycz, A. Lee, R. Iachan, A.V. Gundlapalli, A.J. Hall and A. MacNeil, Seroprevalence of infection-induced SARS-Cov-2 antibodies—united states, September 2021–February 2022. Morbid. Mortal. Wkly Rep. 71 (2022) 606. [CrossRef] [PubMed] [Google Scholar]
- E. Lofgren, N.H. Fefferman, Y.N. Naumov, J. Gorski and E.N. Naumova, Influenza seasonality: underlying causes and modeling theories. J. Virol. 81 (2007) 5429–5436. [CrossRef] [PubMed] [Google Scholar]
- S.W. Park, S. Cobey, C.J.E. Metcalf, J.M. Levine and B.T. Grenfell, Predicting pathogen mutual invasibility and co-circulation. Science 386 (2024) 175–179. [CrossRef] [PubMed] [Google Scholar]
- A. Kousathanas and P.D. Keightley, A comparison of models to infer the distribution of fitness effects of new mutations. Genetics 193 (2013) 1197–1208. [CrossRef] [PubMed] [Google Scholar]
- D.J. Smith, A.S. Lapedes, J.C. De Jong, T.M. Bestebroer, G.F. Rimmelzwaan, A.D. Osterhaus and R.A. Fouchier, Mapping the antigenic and genetic evolution of influenza virus. Science 305 (2004) 371–376. [CrossRef] [PubMed] [Google Scholar]
- A. d’Onofrio and P. Manfredi, Behavioral sir models with incidence-based social-distancing. Chaos Solitons Fractals 159 (2022) 112072. [CrossRef] [Google Scholar]
- S.J. Fox, M. Lachmann, M. Tec, R. Pasco, S. Woody, Z. Du, X. Wang, T.A. Ingle, E. Javan, M. Dahan, et al., Real-time pandemic surveillance using hospital admissions and mobility data. PNAS 119 (2022) e2111870119. [Google Scholar]
- P. Shi, Y. Dong, H. Yan, C. Zhao, X. Li, W. Liu, M. He, S. Tang and S. Xi, Impact of temperature on the dynamics of the covid-19 outbreak in china. Sci. Total Environ. 728 (2020) 138890. [CrossRef] [Google Scholar]
- A. Bouchnita, S. R. Bandekar, K. Bi, S. J. Fox, and J. Garcia, The interplay between evolutionary and immunological dynamics regulates virus variant emergence and competition. Mathematical Modelling of Natural Phenomena https://doi.org/10.1051/mmnp/2025006 (2025). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.