Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 28 - 39
DOI https://doi.org/10.1051/mmnp/20105303
Published online 28 April 2010
  1. F. ArnoldD. C. West. Angiogenesis in wound healing. Pharmac. Ther. 52 (1992), 407-422. [Google Scholar]
  2. P.G. Bowler. The 105 bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy/Wound Manage 49 (2003),44-53. [Google Scholar]
  3. W.S. Bullough. Cell Replacement after Tissue Damage in C. Illingworth (Ed.), Wound Healing, Churchill, London 1966. [Google Scholar]
  4. A.Q. Cai, K.A. Landman, B.D. Hughes. Multi-scale modeling of a wound-healing cell migration assay. J. Theoret. Biol. 245 (2007) no. 3, 576–594. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. R.A.F. Clark. Overview and general considerations of wound repair. In: The Molecular and Cellular Biology of Wound Repair (R. A. F. Clark and P. M. Hendson, eds) 3-34, Plenum, New York 1988. [Google Scholar]
  6. R.A.F Clark. Wound repair. Curr. Opin. Cell Biol. 1 (1989), 1000-1008. [CrossRef] [PubMed] [Google Scholar]
  7. R.A.F Clark. Growth factors and wound repair. J. Cell. Biochem. 46 (1991), 1-2. [CrossRef] [Google Scholar]
  8. R.A.F Clark. Regulation of fibroplasia in cutaneous wound repair. Am. J. Med. Sci. 306 (1993), 42-48. [CrossRef] [PubMed] [Google Scholar]
  9. R. Edwards, K.G. Harding. Bacteria and wound healing. Current Opinion in Infectious Diseases: 17(2004), no. 2, 91-96. [CrossRef] [PubMed] [Google Scholar]
  10. S. EnochK. Harding. Wound bed preparation: the science behind the removal of barriers to healing. Wounds 15 (2003), 213-229. [Google Scholar]
  11. E.A. Gaffney, K. Pugh, P.K. Maini, F. Arnold. Investigating a simple model of cutaneous wound healing angiogenesis. J. Math. Biol. 45 (2002), no. 4, 337-374. [Google Scholar]
  12. D. Hilhorst, J.R. King, M. Röger. Travelling-wave analysis of a model describing tissue degradation by bacteria. European J. Appl. Math. 18 (2007), no. 5, 583-605. [MathSciNet] [Google Scholar]
  13. D. Hilhorst, J.R. King, M. Röger. Mathematical analysis of a model describing the invasion of bacteria in burn wounds. Nonlinear Anal. 66 (2007), no. 5, 1118-1140. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.R. King, A.J. Kooerber. Modeling host tissue degradation by extracelluar bacterial pathogens. Mathematical Medicine and Biology 20(2003), 227-260. [CrossRef] [Google Scholar]
  15. A.J. Koerber, J.R. Kingand, P. Williams. Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus: “quorum”sensing by a single bacterium. J. Math. Biol. 50 (2005), no. 4, 440-488. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. A.J. Koerber, J.R. King, J.P. Ward, P. Williams, J.M. Croft, R.E. Sockett. A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bulletin of mathematical biology. 64 (2002), no. 2:239-59. [CrossRef] [PubMed] [Google Scholar]
  17. S.A. Maggelakis, A.E. Savakis. Modeling techniques in epidermal wound healing. Computational methods in biophysics, biomaterials, biotechnology and medical systems: algorithm development, mathematical analysis, and diagnostics, 2 (2003), 91-118, Kluwer Acad. Publ., Boston, MA. [Google Scholar]
  18. S.A Maggelakis. A mathematical model of tissue replacement during epidermal wound healing. Applied Mathematical modelling 27 (2003), 189-196. [CrossRef] [Google Scholar]
  19. S.A Maggelakis. Modeling the role of angiogenesis in epidermal wound healing. Discrete and Continuous Dynmical Systems Series B 4 (2004), 267-273. [CrossRef] [Google Scholar]
  20. S. McDougall, J. Dallon, J. Sherratt, P. Maini. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 364 (2006), no. 1843, 1385-1405. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. OdlandR. Ross. Human wound repair: I. Epidermal regeneration. J. Cell Biol. 39 (1968), 135-151. [CrossRef] [PubMed] [Google Scholar]
  22. G.J. Pettet, H.M. Byrne, D. L. McElwain, J. Norbury. A model of wound-healing angiogenesis in soft tissue. Mathematical biosciences. 136 (1996), no. 1, 35-63. [CrossRef] [PubMed] [Google Scholar]
  23. G.J. Pettet, A.J. Chaplain, D.L.S. McElwainH.M. Byrne. On the role of angiogenesis in wound healing. Proc. R. Soc. Lond. B 263 (1996), 1487-1493. [CrossRef] [Google Scholar]
  24. P.J. Polverini, P.S. Cotran, M.A. GimbroneE.R. Unanue. Activated macrophages induce vascular proliferation. Nature. 269 (1977), 804-806. [CrossRef] [PubMed] [Google Scholar]
  25. M.C. Robson, B.D. StenbergJ.P. Heggers. Wound healing alterations caused by infections. Clin. Plast. Surg. 17 (1990), 485-492. [PubMed] [Google Scholar]
  26. R. Rudolph, J. Vande Berg, H.P. Egrlich. Wound contraction and scar contracture. In: Wound Healing: Biochemical and Clinical Aspects (I. K. Cohen, R. F. Diegelmann and W. J. Lindblad. eds) Saunders, Philadelphia (1992), 96-114. [Google Scholar]
  27. J.A. SherrattJ.D. Murray. Models of epidermal wound healing. Proc. R. Soc. Lond. B 241 (1990), 29-36. [CrossRef] [Google Scholar]
  28. J.A. SherrattJ.D. Murray. Mathematical analysis of a basic model of epidermal wound healing. J. Math Biol. 29 (1991), 389-404. [CrossRef] [PubMed] [Google Scholar]
  29. M.J. Tindall, S.L. Porter, P.K. Maini, G. Gaglia, J.P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell. Bull. Math. Biol. 70 (2008), no. 6, 1525-1569. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. M.J. Tindall, P.K. Maini, S.L. Porter, J.P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull. Math. Biol. 70 (2008), no. 6, 1570–1607. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. H.V. Waugh, J.A. Sherratt. Macrophage dynamics in diabetic wound healing. Bull. Math. Biol. 68 (2006) no. 1, 197–207. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.