Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 15 - 27
Published online 28 April 2010
  1. A. Raza, S. Gezer, S. Mundle, X. Gao, S. Alvi, R. Borok, S. Rifkin, A. Iftikhar, V. Shetty, A. Parcharidou, J. Loew, B. Marcus, Z. Khan, C. Chaney, J. Showel, S. Gregory, H. Preisler. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood, 86 (1995), No. 1, 268–276. [PubMed] [Google Scholar]
  2. A. Fokas, J. Keller, B. Clarkson. Mathematical model of granulocytopoiesis and chronic myelogenous leukemia. Can. Res., 51 (1991), 2084. [Google Scholar]
  3. A. Parcharidou, A. Raza, T. Economopoulos, E. Papageorgiou, D. Anagnostou, T. Papadaki, S. Raptis. Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective hematopoiesis in patients with myelodysplastic syndromes. Eur. J. Haemat., 62 (1999), 19–26. [CrossRef] [Google Scholar]
  4. A. Raza, S. Mundle, A. Iftikhar, S. Gregory, B. Marcus, Z. Khan, S. Alvi, V. Shetty, S. Dameron, V. Wright, S. Adler, J. Loew, S. Shott, S. Ali, H. Preisler. Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Amer. J. Hematol., 48 (1995), 143–154. [CrossRef] [Google Scholar]
  5. B. Djulbegovic, S. Svetina. Mathematical model of acute myeloblastic leukaemia: an investigation of relevant kinetic parameters. Cell Tissue Kinet., 18 (1985), 307–319. [PubMed] [Google Scholar]
  6. B. Lord, H. Gurney, J. Chang, N. Thatcher, D. Crowther, T. Dexter. Haemopoietic cell kinetics in humans treated with RGM-CSF. Int. J. Cancer, 50 (1992), 26–31. [CrossRef] [PubMed] [Google Scholar]
  7. B. Lord, N. Testa, S. Bretti, J. Chang, H. Demuynck, L. Coutinho, E. Campos, L. Fitzsimmons, H. Scarffe. Haemopoietic progenitor and myeloid cell kinetics in humans treated with interleukin-3 and granulocyte/macrophage colony-stimulating factor in combination. Int. J. Cancer, 59 (1994), 483–490. [CrossRef] [PubMed] [Google Scholar]
  8. B. Lowenberg, J. Griffin, M. Tallman. Acute myeloid leukemia and acute promyelocytic leukemia. Amer. Soc. Hematol., 2003 [Google Scholar]
  9. D. Bouscary, J. Vos, M. Guesnu, K. Jondeau, F. Viguier, J. Melle, F. Picard, F. Dreyfus, M. Fontenay-Roupie. Fas/Apo-1 (cd95) expression and apoptosis in patients with myelodysplastic syndromes. Leuk., 11 (1997), 839–845. [CrossRef] [Google Scholar]
  10. D. Dale, W. Liles, C. Llewellyn, T. Price. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Amer. J. Hematol., 57 (1998), 7–15. [CrossRef] [Google Scholar]
  11. D. Steensma, A. Tefferi. The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk. Res., 27 (2003), 95–120. [CrossRef] [PubMed] [Google Scholar]
  12. E. Afenya, C. Calderon. Normal cell decline and inhibition in acute leukemia: a biomathematical modeling approach. J. Can. Det. Prev., 20 (1996), No. 3, 171–179. [Google Scholar]
  13. E. Afenya. Acute leukemia and chemotherapy: a modeling viewpoint. Math. Biosci., 138 (1996), 79–100. [CrossRef] [PubMed] [Google Scholar]
  14. E. Hellstrom-Lindberg, L. Kanter-Lewensohn, A. Ost. Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin. Leuk. Res., 21(1997), No. 5, 415–425. [CrossRef] [PubMed] [Google Scholar]
  15. E. Hofer, S. Brucher, K. Mehr, B. Tibken. An approach to a biomathematical model lymphocytopoiesis. Stem Cells, 13 (1995), No. 1, 290–300. [CrossRef] [PubMed] [Google Scholar]
  16. H. Foerster. Some remarks on changing populations. In: The Kinetics of Cellular Proliferation (F. Stohlman, Jr., ed.), Grune and Stratton, p. 382, New York, 1959. [Google Scholar]
  17. H. Wichmann, M. Loeffler, S. schmitz. A concept of hemopoeitic regulation and its biomathematical realization. Blood Cells, 14 (1988), 411. [PubMed] [Google Scholar]
  18. I. Roeder, M. Herberg, M. Horn. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bull. Math. Biol., 71 (2009), 602–626. [Google Scholar]
  19. J. Anderson, F. Appelbaum, L. Fisher, G. Stoch, H. Shulman, C. Anasetti, W. Bensinger, E. Bryant, C. Buckner, K. Doney, P. Martin, J. Sanders, K. Sullivan, E. Thomas, R. Witherspoon, J. Hansen, R. Storb. Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndromes. Blood, 82 (1993), 677. [PubMed] [Google Scholar]
  20. J. Parker, G. Mufti, F. Rasool, A. Mijovic, S. Devereux, A. Pagliuca. the role of apoptosis, proliferation, and bcl-2 related proteins in myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood, 96 (2000), No. 12, 3932–3938. [PubMed] [Google Scholar]
  21. K. Hara, A. Yasunobu, N. Hirase, M. Shiratsuchi, T. Kihara, J. Nishimura, H. Nawata, K. Muta. Apoptosis resistance of mature neutrophils in a case of chronic neutrophilic leukaemia. Eur. J. Haematol., 66 (2001), 70–71. [CrossRef] [PubMed] [Google Scholar]
  22. K. Shimazaki, K. Oshima, J. Suzumiya, C. Kawasaki, M. Kikuchi. Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br. J. Haemat., 110 (2000), 584–590. [CrossRef] [Google Scholar]
  23. L. Glass, M. Mackey. From clocks to chaos. Princeton University Press, Princeton, 1988. [Google Scholar]
  24. M. Aljurf, S. Zaidi. Chemotherapy and hematopoietic stem cell transplantation for adult T-cell lymphoblastic lymphoma: current status and controversies. Biol. Blood Marrow Transplant. 11 (2005), No. 10, 739–754. [CrossRef] [PubMed] [Google Scholar]
  25. M. Mackey, L. Glass. Oscillation and chaos in physiological control systems. Science, 197 (1977), 287–289. [CrossRef] [PubMed] [Google Scholar]
  26. M. Mackey. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941–956. [PubMed] [Google Scholar]
  27. N. Kazarinoff, P. denDriessche. Control of oscillations in hematopoiesis. Science, 203 (1979), 1348–1349. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. N. Marer, P. Skacel. Up-regulation of 2,6 sialylation during myeloid maturation: a potential role in myeloid cell release from the bone marrow. J. Cell. Phy., 179 (1999), 315–324. [CrossRef] [Google Scholar]
  29. O. Scherbaum, G. Rasch. cell size distribution and single cell growth in Tetrahymena Pyriformis GL. Acta Pathol. Microbiol. Scand., 41 (1957), 161. [CrossRef] [PubMed] [Google Scholar]
  30. P. Lepelley, L. Campergue, N. Grardel , C. Preudhomme, A. Cosson, P. Fenaux. Is apoptosis a massive process in myelodysplastic syndromes? Brit.J. Haematol., 95 (1996), 368–371. [CrossRef] [Google Scholar]
  31. R. Stone, M. Sekeres, G. Garcia-Maneros, R. Lyons. Recent advances in low- and intermediate-1-risk myelodysplastic syndrome: developing a consensus for optimal therapy. Clin. Adv. Hematol. Oncol., 6 (2008), No. 12, 1–15. [Google Scholar]
  32. S. Khan, A. Raza, M. Barcos, N. Yousuf, T. Saikia, M. Masterson, J. Bennett, G. Browman, J. Goldberg, H. Grunwald, R. Larson, A. Sandberg, R. Vogler, H. Preisler. Cell cycle and clinical characteristics of patients with acute myeloid leukemia and myelodysplasia whose biopsies are reactive with anti-factor VIII antibody. Leuk. Res., 15 (1991), No. 1, 51–57. [CrossRef] [PubMed] [Google Scholar]
  33. S. Mundle, P. Venugopal, J. Cartlidge, D. Pandav, L. Broady-Robinson, S. Gezer, E. Robin, S. Rifkin, M. Klein, D. Alston, B. Hernandez, D. Rosi, S. Alvi, V. Shetty, S. Gregory, A. Raza. Indication of an involvement of interleukin-1 converting enzyme-like protease in intramedullary apoptotic cell death in the bone marrow of patients with myelodysplastic syndromes. Blood, 88 (1996), No. 7, 2640–2647. [PubMed] [Google Scholar]
  34. S. Mundle, V. Shetty, A. Raza. Caspases and apoptosis in myelodysplastic syndromes. Letters to the Editor/Exp. Hematol., (2000), 1–2. [Google Scholar]
  35. S. Mundle. Lingering dilemmas about the status of progenitor cells in myelodysplasia. Arch. Med. Res., 34 (2003), 515–519. [CrossRef] [PubMed] [Google Scholar]
  36. S. Rubinow, J. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Biol., 1 (1975), 187–225. [CrossRef] [PubMed] [Google Scholar]
  37. S. Rubinow, J. Lebowitz. A mathematical model of the acute myeloblastic leukemic state in man. Biophys. J., 16 (1976), 897–910. [CrossRef] [PubMed] [Google Scholar]
  38. S. Schmitz, H. Franke, J. Brusis, H. Wichmann. 1993 Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis. Exp. Hematol., 21 (1993), 755–760. [PubMed] [Google Scholar]
  39. S. Schrier. Hematopoiesis and red blood cell function. Sci. Am. Med., I (1988), 2–8. [Google Scholar]
  40. T. Price, G. Chatta, D. Dale. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood, 88 (1996), No. 1, 335–340. [PubMed] [Google Scholar]
  41. U. Creutzig, D. Reinhardt, M. Zimmermann, T. Klingebiel, H. Gadner. Intensive chemotherapy versus bone marrow transplantation in pediatric acute myeloid leukemia: a matter of controversies. Blood, 97 (2001), No. 11, 3671–3672. [CrossRef] [PubMed] [Google Scholar]
  42. V. Shetty, S. Hussaini, L. Broady-Robinson, K. Allampallam, S. Mundle, R. Borok, E. Broderick, L. Mazzoran, F. Zorat, A. Raza. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood, 96 (2000), No. 4, 1388–1392. [PubMed] [Google Scholar]
  43. W. Stock. Controversies in the treatment of AML: case-based discussion. Amer. Soc. Hematol., 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.