Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 7, 2010
JANO9 – The 9th International Conference on Numerical Analysis and Optimization
Page(s) 67 - 72
Published online 26 August 2010
  1. B. Achchab, A. Agouzal, A. El Fatini, A. Souissi. Robust hierarchical a posteriori error estimates for stabilized convection-diffusion problem. Numer. Meth. Part. Diff. Equats., to appear.
  2. A. Agouzal. A posteriori error estimator for nonconforming finite element methods. Appl. Math. Lett., 7 (1994), No. 5, 61-66. [CrossRef] [MathSciNet]
  3. M. Ainsworth, I. Babuska. Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 36 (1999), 331-353. [CrossRef] [MathSciNet]
  4. R.E. Bank, A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44 (1985), 283-301. [CrossRef] [MathSciNet]
  5. E. Dari, R. Durán, C. Padra. Error estimators for nonconforming finite element approximations of the Stokes problem . Math. Comput., 64 (1995), No. 211, 1017-1033. [CrossRef] [MathSciNet]
  6. P. Morin, R.H. Nochetto, K.G. Siebert. Local problems on stars: a posteriori error estimators, convergence and performance. Math. Comp., 72 (2003), 1067-1097. [CrossRef] [MathSciNet]
  7. R.H. Nochetto. Removing the saturation assumption in a posteriori error analysis. Istit. Lombardo. Sci. Lett. Rend. A., 127 (1993), 67-82.
  8. R. Verfürth. Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal., 43 (2005), 1766-1782. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.