Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 2, 2011
Modelling of plant growth
Page(s) 107 - 132
Published online 01 March 2011
  1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson. Biologie moléculaire de la cellule, 3th edn. Médecine-Sciences, Flammarion, 1995. [Google Scholar]
  2. N. Bessonov, V. Volpert. On a problem of plant growth. In: Patterns and waves. A. Abramian, S. Vakulenko, V. Volpert, Eds. St. Petersburg, 2003, pp. 323–337. [Google Scholar]
  3. N. Bessonov, V. Volpert. Dynamic models of plant growth. Publibook, Paris, 2006. [Google Scholar]
  4. N. Bessonov, N. Morozova, V. Volpert. Modelling of branching patterns in plants. Bull. Math. Biology, 70 (2008), no. 3, 868–893. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. E. Boucheron, A. Guivarch, A. Azmi, W. Dewitte, H. Van Onckelen, D. Chriqui. Competency of Nicotiana tabacum L. stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins. Planta, 215 (2002), 267–278. [CrossRef] [PubMed] [Google Scholar]
  6. V. Brukhin, N. Morozova. Plant growth and development - basic knowledge and current views. Math. Model. Nat. Phenom. Vol. 6, No. 2, 2011, pp. 1–53. [Google Scholar]
  7. DArcy Thompson. On growth and forms. The complete revised edition. Dover, New York, 1992. [Google Scholar]
  8. L. Forest, J. Demongeot. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D Don). Bull. Math. Biol. 68 (2006), 753–784. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. K. Himanen, E. Boucheron, S. Vanneste, J. de Almeida Engler, D. Inze, T. Beeckman. Auxin mediated cell cycle activation during early lateral root initiation. Plant Cell, 14 (2002), 2339–2351. [CrossRef] [PubMed] [Google Scholar]
  10. I. Hoffmann, P.R. Clarke, M.J. Marcote, E. Karsenti, G. Draetta. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12 (1993), no. 1, 53–63. [PubMed] [Google Scholar]
  11. R. V. Jean. Phyllotaxis. A systematic study in plant morphogenesis. Cambridge University Press, New York, 1994. [Google Scholar]
  12. H. Jonsson, M.G. Heisler, B.E. Shapiro, E.M. Meyerowitz, E. Mjolsness. An auxin-driven polarized transport model for phyllotaxis. PNAS 103 (2006), no. 5, 1633–1638. [Google Scholar]
  13. N. Khiripet, R. Viruchpintu, J. Maneewattanapluk, J. Spangenberg, J. R. Jungck. Morphospace: measurement, modeling, mathematics, and meaning. Math. Model. Nat. Phenom., 6 (2011), No. 2, 54–81. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. Z. Magyar, L. De Veylder, A. Atanassova, L. Bako, D. Inze, L. Bogre. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell, 17 (2005) no. 9, 2527–2541. [CrossRef] [PubMed] [Google Scholar]
  15. H. Meinhardt, A.J. Koch, G. Bernasconi. Models of pattern formation applied to plant development. In: Symmetry in Plants, (D. Barabe and R. V. Jean, Eds), World Scientific Publishing, Singapore, 1998, 723–758. [Google Scholar]
  16. H. G. Othmer, K. Painter, D. Umulis, C. Xue. The intersection of theory and application in elucidating pattern formation in developmental biology. Math. Model. Nat. Phenom., 4 (2009), No. 4, 3–82. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  17. D. Reinhardt, E.R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, C. Kuhlemeier. Regulation of phyllotaxis by polar auxin transport. Nature 462 (2003), 255–260. [CrossRef] [PubMed] [Google Scholar]
  18. I.V. Rudskiy, G.E. Titova, T.B. Batygina. Analysis of space-temporal symmetry in the early embryogenesis of Calla palustris L., Araceae. Math. Model. Nat. Phenom., 6 (2011), No. 2, 82–106. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  19. F. Skoog, C.O. Miller. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11 (1957), 118–140. [PubMed] [Google Scholar]
  20. R.S. Smith, S. Guyomarch, T. Mandel, D. Reinhardt, C. Kuhlemeier, P. Prusinkiewicz. A plausible model of phyllotaxis. PNAS, 103 (2006), no. 5, 1301–1306. [Google Scholar]
  21. R. Soni, J.P. Carmichael, Z.H. Shah, J.A. Murray. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell, 7 (1995) no. 1, 85–103. [CrossRef] [PubMed] [Google Scholar]
  22. J. Traas, I. Bohn-Courseau. Cell proliferation patterns at the shoot apical meristem. Curr. Opin. Plant Biol. 8 (2005), 587–592. [CrossRef] [PubMed] [Google Scholar]
  23. B.S. Treml, S. Winderl, R. Radykewicz, M. Herz, G. Schweizer, P. Hutzler, E. Glawischnig, R.A. Ruiz. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 139 (2005), no. 18, 4063–4074. [CrossRef] [Google Scholar]
  24. A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994. [Google Scholar]
  25. M. Yamaguchi, H. Kato, S. Yoshida, S. Yamamura, H. Uchimiya, M. Umeda. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Natl. Acad. Sci. USA, 100 (2003), no. 13, 8019–8023. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.