Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 2, 2011
Modelling of plant growth
Page(s) 82 - 106
Published online 11 October 2010
  1. O.E. Akimov. Discretnaya matematika: logika, gruppy, graphy. Laboratorya Basovyh Znaniy, Moskva, 2003. [Google Scholar]
  2. F. Baluška, D. Volkmann, P.W. Barlow. Eukaryotic cells and their cell bodies: cell theory revised. Annals of Botany 94 (2004), 9-32. [CrossRef] [PubMed] [Google Scholar]
  3. P.W. Barlow. Structure and function at the root apex – phylogenetic and ontogenetic perspectives on apical cells and quiescent centres. Plant and Soil, 167 (1994), 1-16. [CrossRef] [Google Scholar]
  4. P.W. Barlow, H.B. Lück, J. Lück. The natural philosophy of plant form: autoreproduction as a component of a structural explanation of plant form. Annals of Botany, 88 (2001), 1141-1152. [CrossRef] [Google Scholar]
  5. T.B. Batygina, I.V. Rudskiy. Role of Stem Cells in Plant Morphogenesis. Doklady Biological Sciences, 410 (2006), 400–402. [CrossRef] [Google Scholar]
  6. I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Papanov, J. Friml, R. Heidstra, M. Aida, K. Palme, B. Scheres. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433 (2005), 39-44. [CrossRef] [PubMed] [Google Scholar]
  7. M.J.M. de Boer. The relationship between cell division pattern and global shape of young fern gamethophytes. II. Morphologenesis of heart-shaped thalli. Botanical Gazette, 151 (1990), No. 4, 435-439. [CrossRef] [Google Scholar]
  8. M.J.M. de Boer, M. de Does. The relationship between cell division pattern and global shape of young fern gamethophytes. I. A model study. Botanical Gazette, 151 (1990), No. 4, 423-434. [CrossRef] [Google Scholar]
  9. G. Bossinger, M. Maddaloni, M. Motto, F. Salamini. Formation and cell lineage patterns of the shoot apex of maize. The Plant Journal, 2 (1992), No. 3, 311-320. [CrossRef] [Google Scholar]
  10. T.D. Bunney, A.H. De Boer, M. Levin. Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 130 (1999), 4847-4858. [CrossRef] [Google Scholar]
  11. E. Coen, A-G. Rolland-Lagan, M. Matthews, J.A. Bangham, P. Prusinkiewicz. The genetic of geometry. PNAS, 101 (2004), No. 14, 4728-4735. [CrossRef] [Google Scholar]
  12. K. Ehlers, R. Kollmann. Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma, 216 (2001), 1-30. [CrossRef] [PubMed] [Google Scholar]
  13. A. J. Fleming. The integration of cell proliferation and growth in leaf morphogenesis. Journal of Plant Research, 119 (2006), 31-36. [CrossRef] [PubMed] [Google Scholar]
  14. D. Frumkin, A. Wasserstorm, S. Kaplan, U. Feige, E. Shapiro. Genomic variability within an organism exposes its cell lineage tree. PLoS Computational Biology, 1 (2005), 5. [Google Scholar]
  15. N. Hara. Developmental anatomy of the three-dimentional structure of the vegetative shoot apex. Journal of Plant Research, 108 (1995), 115-125. [CrossRef] [Google Scholar]
  16. F. Harary. Graph theory. URSS, Moskva, 2009. [Google Scholar]
  17. C. Hebant, R. Hebant-Mauri, J. Barthonnet. Evidence for division and polarity in apical cells of Bryophytes and Pteridophytes. Planta, 138 (1978), 49-52. [CrossRef] [PubMed] [Google Scholar]
  18. A. Hudson. Development of symmetry of plants. Annu. Rev. Plant Mol. Biol. 51 (2000), 349-70. [CrossRef] [Google Scholar]
  19. R. Imaichi, R. Hiratsuka. Evolution of shoot apical meristem structures in vescular plants with respect to plasmodesmatal network. American Journal of Botany, 94 (2007), No. 12, 1911-1921. [CrossRef] [PubMed] [Google Scholar]
  20. M.C. Jarvis, S.P.H. Briggs, J.P. Knox. Intercellular adhesion and cell separation in plants. Plant, Cell and Environment, 26 (2003), 977-989. [CrossRef] [Google Scholar]
  21. D.A. Johansen. Plant embryology. Chronica Botanica, Waltham MA, 1950. [Google Scholar]
  22. G. Jürgens. Axis Formation in plant embryogenesis: cues and clues. Cell, 81 (1995), 467-470. [CrossRef] [PubMed] [Google Scholar]
  23. J.A. Kaltschmidt, A.H. Brand. Asymmetric cell division: microtubule dynamics and spindle asymmetry. J. Cell Sci. 115 (2002), 2257-2264. [PubMed] [Google Scholar]
  24. R.W. Korn. The three-dimensional shape of plant cells and its relationship to pattern of tissue growth. New Phytologist, 73 (1974), 927-935. [CrossRef] [Google Scholar]
  25. R.W. Korn. Apical cells as meristems. Acta Biotheretica, 41 (1993), 175-189. [CrossRef] [Google Scholar]
  26. F. Kragler, W.J. Lucas, J. Monzer. Plasmodesmata: dunamics, domains and patterning. Annals of Botany, 81 (1998), 1-10. [CrossRef] [Google Scholar]
  27. T. Laux, T. Würschum, H. Breuninger. Genetic Regulation of embryonic pattern formation. The Plant Cell, 16 (2004), S190-S202. [CrossRef] [PubMed] [Google Scholar]
  28. H.N. Mozingo. Changes in the three dimensional shape during growth and division of living epidermal cells in the apical meristem of Phleum pratense roots. American Journal of Botany, 38 (1951), 495-511. [CrossRef] [Google Scholar]
  29. J. Nardmann, W. Werr. Patterning of the maize embryo and the perspective of evolutionary developmental biology. In: J.L. Bennetzen, S.C. Hake (eds.). Handbook of maize: its biology. Springer Science + Business Media, LLC, 2009. [Google Scholar]
  30. P. Piazza, S. Jasinski, M. Tsiantis. Evolution of leaf developmental mechanisms. New Phytologist, 167 (2005), 693-710. [CrossRef] [Google Scholar]
  31. R. I. Pennel, C. Lamb. Programmed cell death in plants. The Plant Cell, 9 (1997), 1157-1168. [CrossRef] [PubMed] [Google Scholar]
  32. J.H. Priestley. Cell growth and cell division in the shoot of the flowering plant. New Phytologist, 28 (1929), No. 1, 54-84. [CrossRef] [Google Scholar]
  33. R.M. Ranganath. Asymmetric cell division – how plant cells get their unique identity. In: A. Maceira-Coelho (Ed.) Progress in molecular and subcellular biology: Asymmetric cell division, 45 (2007), 39-60. [Google Scholar]
  34. D. Reinchardt, T. Mandel, C. Kuhlemeier. Auxin regulates the initiation and radial position of plant lateral organs. The Plant Cell, 12 (2000), 507-518. [CrossRef] [PubMed] [Google Scholar]
  35. D. Reinchardt, E-R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, C. Kuhlemeier. Regulation of phyllotaxis by polar auxin transport. Nature, 426 (2003), 255-260. [CrossRef] [PubMed] [Google Scholar]
  36. P.L.H. Rinne, C. van de Schoot. Symplastic fields in the tunica of shoot apical meristem coordinate morphogenetic events. Development 125 (1998), 1477-1485. [PubMed] [Google Scholar]
  37. J. A. Roberts, K. A. Elliot, Z. H. Gonzales-Carranza. Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology, 53 (2002), 131-158. [CrossRef] [PubMed] [Google Scholar]
  38. T. Rudge, J. Haselhoff. Computational model of cellular morphogenesis in plants. In: M. Carpcarrere. Advances in artificial life: 8th European conference, ECAL 2005, Canterbury, UK, September 5-9, 2005: proceedings. Springer-Verlag Berlin Heidelberg, 2005. [Google Scholar]
  39. B. Scheres. Plant cell identity. The role of position and lineage. Plant Physiology, 125 (2001), 112-114. [CrossRef] [PubMed] [Google Scholar]
  40. M. Sauer, J. Balla, C. Luschnig, J. WiIJnewska, V. Reinöhl, J. Friml, E. Benková. Canalisation of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes and Development, 20 (2006), 2902-2911. [Google Scholar]
  41. N. Seigerman. Three-dimensional cell shape in coconut endosperm. American Journal of Botany, 38 (1951), 811-822. [CrossRef] [Google Scholar]
  42. R. Souèges. Exposés d’embryologie et de morphologie végétales. V. La segmentation. Deuxième fascicule: III. – Les phénomènes externes. IV. – Les blastomères. Hermann et Cie, Paris, 1936. [Google Scholar]
  43. R. Souèges. Exposés d’embryologie et de morphologie végétales. VIII. Les lois du dévelopment. Hermann et Cie, Paris, 1937. [Google Scholar]
  44. R. Souèges. Exposés d’embryologie et de morphologie végétales. X. Embryogénie et classification. Deuxième fascicule: Essai d’un système embryogénique (Partie générale). Hermann et Cie, Paris, 1939. [Google Scholar]
  45. T.H. Speller, D. Whitney, E. Crawley. Using shape grammar to derive cellular automata rule patterns. Complex Systems, 17 (2007), 79-102. [MathSciNet] [Google Scholar]
  46. G. Stent. Developmental cell lineage. Int. J. Dev. Biol., 42 (1998), 237-241. [PubMed] [Google Scholar]
  47. R.N. Stewart, H. Dermen. Ontogeny in monocotyledons as revealed by studies of the developmental anatomy of periclinal chloroplast chimeras. American Journal of Botany, 66 (1979), No. 1, 47-58. [CrossRef] [Google Scholar]
  48. A. Weismann. The germ-plasm. A theory of heredity. Charles Scribner’s Sons, New York, 1893. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.