Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 136 - 158
Section Discrete Modeling
DOI https://doi.org/10.1051/mmnp/20116608
Published online 05 October 2011
  1. D. D. Richman, R. J. Whitley, F. G. Hayden. Clinical Virology. (second edition); ASM Press, Washington DC, 2009. [Google Scholar]
  2. M.C.M. Coxeter. “Regular polytopes", Methuen and Cř, London, 1948. [Google Scholar]
  3. M. Eigen, 1971, Selforganization of matter and the evolution of biological molecules, Springer-Verlag, Die Natutwissenschaften, 58 heft 10, [Google Scholar]
  4. H. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley. C60: Buckminsterfullerene. Nature, 318 (1995), 162–163. [NASA ADS] [CrossRef] [Google Scholar]
  5. D. L. D. Caspar, A. Klug. Physical Principles in the Construction of Regular Viruses. Cold Spring Harbor Symp. Quant. Biology, 27 (1962), No 1, 1–24. [CrossRef] [Google Scholar]
  6. A. Zlotnick. To Build a Virus Capsid : An Equilibrium Model of the Self Assembly of Polyhedral Protein Complexes. J. Mol. Biology, 241 (1994), 59–67. [CrossRef] [Google Scholar]
  7. S. B. Larson. Refined structure of satellite tobacco mosaic virus at 1.8 A resolution. Journal of Molecular Biology, 277 (1998), 37–59. [CrossRef] [PubMed] [Google Scholar]
  8. D. J. McGeogh, A. J. Davison. The descent of human herpesvirus. 8.Semin. Cancer Biology, 9 (1999), 201–209. [CrossRef] [Google Scholar]
  9. D. J. McGeogh, A. J. Davison. The molecular evolutionary history of the herpesviruses: origins and evolution of viruses. Academic Press Ltd., London, 1999. [Google Scholar]
  10. P. L. Stewart, R. M. Burnett, M. Cyrklaff, S. D. Fuller. Image reconstruction reveals the complex molecular organization of adenovirus. Cell, 67 (1991), 145–154. [CrossRef] [PubMed] [Google Scholar]
  11. B. L. Trus. Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a a Betaherpesvirus, Cytomegalovirus. Journal of Virology, 75 (2001), No 6, 2879–2890. [CrossRef] [PubMed] [Google Scholar]
  12. Q. Wang, T. Lin, L. Tang, J. E. Johnson, M. G. Finn. Icosahedral Virus Particles as Addressable Nanoscale Building Blocks. Angewandte Chemie, 114 (2002), No 3, 477–480. [CrossRef] [Google Scholar]
  13. H. R. Hill, N. J. Stonehouse, S. A. Fonseca, P. Stockley. Analysis of phage MS2 coat protein mutants expressed from a reconstituted phagemid reveals that proline 78 is essential for viral infectivity. Journal of Molecular Biology, 266, (1997), 1–7. [CrossRef] [PubMed] [Google Scholar]
  14. P. E. Prevelige, D. Thomas, J. King. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. Journal, 64 (1993), 824–835. [CrossRef] [Google Scholar]
  15. B. Buckley, S. Silva, S. Singh. Nucleotide sequence and in vitro expression of the capsid protein gene of tobacco ringspot virus. Virus Research, 30 (1993), 335–349. [CrossRef] [PubMed] [Google Scholar]
  16. R. Twarock. A tiling approach to virus capsid assembly explaining a structural puzzle in virology. Journal of Theoretical Biology, 226 (2004), No 4, 477–482. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. R. Kerner. The principle of self-similarity, in “ Current Problems in Condensed Matter”, ed. J. Moran-Lopez, (1998), 323–341. [Google Scholar]
  18. R. Kerner. Model of viral capsid growth. Journal Computational and Mathematical Methods in Medicine, 6 (2007), Issue 2, 95–97. [Google Scholar]
  19. R. Kerner. Classification and evolutionary trends of icosahedral viral capsids. Journal Computational and Mathematical Methods in Medicine, 9 (2008), Issue 3 & 4, 175–181. [CrossRef] [Google Scholar]
  20. R. Kerner. Models of Agglomeration and Glass Transition. Imperial College Press, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.