Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 136 - 158
Section Discrete Modeling
DOI https://doi.org/10.1051/mmnp/20116608
Published online 05 October 2011
  1. D. D. Richman, R. J. Whitley, F. G. Hayden. Clinical Virology. (second edition); ASM Press, Washington DC, 2009.
  2. M.C.M. Coxeter. “Regular polytopes", Methuen and Cř, London, 1948.
  3. M. Eigen, 1971, Selforganization of matter and the evolution of biological molecules, Springer-Verlag, Die Natutwissenschaften, 58 heft 10,
  4. H. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley. C60: Buckminsterfullerene. Nature, 318 (1995), 162–163. [NASA ADS] [CrossRef]
  5. D. L. D. Caspar, A. Klug. Physical Principles in the Construction of Regular Viruses. Cold Spring Harbor Symp. Quant. Biology, 27 (1962), No 1, 1–24. [CrossRef]
  6. A. Zlotnick. To Build a Virus Capsid : An Equilibrium Model of the Self Assembly of Polyhedral Protein Complexes. J. Mol. Biology, 241 (1994), 59–67. [CrossRef]
  7. S. B. Larson. Refined structure of satellite tobacco mosaic virus at 1.8 A resolution. Journal of Molecular Biology, 277 (1998), 37–59. [CrossRef] [PubMed]
  8. D. J. McGeogh, A. J. Davison. The descent of human herpesvirus. 8.Semin. Cancer Biology, 9 (1999), 201–209. [CrossRef]
  9. D. J. McGeogh, A. J. Davison. The molecular evolutionary history of the herpesviruses: origins and evolution of viruses. Academic Press Ltd., London, 1999.
  10. P. L. Stewart, R. M. Burnett, M. Cyrklaff, S. D. Fuller. Image reconstruction reveals the complex molecular organization of adenovirus. Cell, 67 (1991), 145–154. [CrossRef] [PubMed]
  11. B. L. Trus. Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a a Betaherpesvirus, Cytomegalovirus. Journal of Virology, 75 (2001), No 6, 2879–2890. [CrossRef] [PubMed]
  12. Q. Wang, T. Lin, L. Tang, J. E. Johnson, M. G. Finn. Icosahedral Virus Particles as Addressable Nanoscale Building Blocks. Angewandte Chemie, 114 (2002), No 3, 477–480. [CrossRef]
  13. H. R. Hill, N. J. Stonehouse, S. A. Fonseca, P. Stockley. Analysis of phage MS2 coat protein mutants expressed from a reconstituted phagemid reveals that proline 78 is essential for viral infectivity. Journal of Molecular Biology, 266, (1997), 1–7. [CrossRef] [PubMed]
  14. P. E. Prevelige, D. Thomas, J. King. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. Journal, 64 (1993), 824–835. [CrossRef]
  15. B. Buckley, S. Silva, S. Singh. Nucleotide sequence and in vitro expression of the capsid protein gene of tobacco ringspot virus. Virus Research, 30 (1993), 335–349. [CrossRef] [PubMed]
  16. R. Twarock. A tiling approach to virus capsid assembly explaining a structural puzzle in virology. Journal of Theoretical Biology, 226 (2004), No 4, 477–482. [CrossRef] [MathSciNet] [PubMed]
  17. R. Kerner. The principle of self-similarity, in “ Current Problems in Condensed Matter”, ed. J. Moran-Lopez, (1998), 323–341.
  18. R. Kerner. Model of viral capsid growth. Journal Computational and Mathematical Methods in Medicine, 6 (2007), Issue 2, 95–97.
  19. R. Kerner. Classification and evolutionary trends of icosahedral viral capsids. Journal Computational and Mathematical Methods in Medicine, 9 (2008), Issue 3 & 4, 175–181. [CrossRef]
  20. R. Kerner. Models of Agglomeration and Glass Transition. Imperial College Press, 2007.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.