Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 108 - 135
Section Discrete Modeling
DOI https://doi.org/10.1051/mmnp/20116607
Published online 05 October 2011
  1. S. Elrod, W. Stansfield. Schaum’s Outline of Genetics, Fifth Edition. McGraw-Hill, New York, 2010.
  2. R. Brooker, E. Widmaier, L. Graham, P. Stiling. Biology, Second Edition. McGraw-Hill, New York, 2010.
  3. N. Campbell, N. A. Reece, J. B. Jackson, R. B. Cain, M. L. Urry, L. A. Wasserman, S. A. Minorsky. Biology, Ninth Edition. Benjamin Cummings, San Diego, 2011.
  4. P. Karp. Cell and Molecular Biology: Concepts and Experiments, Fifth Edition. Wiley, New York, 2007.
  5. W. H. Elliott, D. C. Elliott. Biochemistry and Molecular Biology, Fourth Edition. Oxford University Press, Oxford, U.K., 2009.
  6. D. W. Sumners, C. Ernst, S. J. Spengler, N. R. Cozzarelli. Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys. 28 (1995), 253–313. [CrossRef] [PubMed]
  7. N. R. Cozzarelli, J. C. Wang. DNA Topology and Its Biological Effects. Cold Spring Harbor Monograph Series 20, 1990.
  8. G. Balliano, P. Milla. Topology of DNA: When manipulation supports the lack of “space-filling" imagination. Biochemical Education, 25 (1997), 209–210. [CrossRef]
  9. J. R. Jungck, H. Gaff, A. E. Weisstein. Mathematical manipulative models: In defense of “Beanbag Biology". CBE Life Sci Educ. 9 (2010), 201–211. [CrossRef] [PubMed]
  10. J. R. Roberts, E. Hagedorn, P. Dillenburg, M. Patrick, T. Herman. Physical models enhance molecular three-dimensional literacy in an introductory biochemistry course*. Biochemistry and Molecular Biology Education, 33 (2005), 105–110. [CrossRef]
  11. T. Herman, J. Morris, S. Colton, A. Batiza, M. Patrick, M. Franzen, D. S. Goodsell. Tactile teaching: exploring protein structure/function using physical models. Biochem. Mol. Biol. Educ. 34 (2006), 247–254. [CrossRef] [PubMed]
  12. “kitefrog". Möbius Strip: New Discoveries. 2011 (2008).
  13. E. Babaev, Intuitive Chemical Topology Concepts (Chapter 5), in: D. Bonchev, R. Rouvray (Eds.), Chemical Topology: Introduction and Fundamentals. Gordon and Breach, 1999, pp. 167–264.
  14. A. D. Bates, A. Maxwell. DNA Topology. Oxford University Press, New York, 2005.
  15. T. C. Boles, J. H. White, N. R. Cozzarelli. Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213 (1990), 931–951. [CrossRef] [PubMed]
  16. C. D. Hardy, N. J. Crisona, M. D. Stone, N. R. Cozzarelli. Disentangling DNA during replication: a tale of two strands. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359 (2004), 39–47. [CrossRef] [PubMed]
  17. J. M. Fogg, N. Kolmakova, I. Rees, S. Magonov, H. Hansma, J. J. Perona, E. L. Zechiedrich. Exploring writhe in supercoiled minicircle DNA. J. Phys. Condens Matter. 18 (2006), S145–S159. [CrossRef] [PubMed]
  18. J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D. Sumners, J. Roca. DNA knots reveal a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 9165–9169. [CrossRef] [PubMed]
  19. H. Willenbrock, D. W. Ussery. Chromatin architecture and gene expression in Escherichia coli. Genome Biol. 5 (2004), 252.
  20. J. H. White. Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics. 91 (1969), 693–728. [CrossRef] [MathSciNet]
  21. W. R. Bauer, F. H. Crick, J. H. White. Supercoiled DNA. Sci. Am. 243 (1980), 100–113. [PubMed]
  22. T. T. Eckdahl. Investigating DNA supercoiling. The American Biology Teacher. 61 (1999), 214–216. [CrossRef]
  23. J. M. Fogg, D. J. Catanese, G. L. Randall, M. C. Swick, L. Zechiedrich. Differences between positively and negatively supercoiled DNA that topoisomerases may distinguish (Chapter), in Mathematics of DNA Structure, Function and Interactions The IMA Volumes in Mathematics and its Applications, 150 (2009), 73–121.
  24. G. Witz, A. Stasiak. DNA supercoiling and its role in DNA decatenation and unknotting. Nucl. Acids Res. 38 (2010), 2119–2133. [CrossRef]
  25. M. D. F. Kamenetskii. Unraveling DNA: The most important molecule of life, John Wiley & Sons, 1997.
  26. A. Sossinsky, G. Weiss. Knots: Mathematics with a twist. Harvard University Press, 2002.
  27. L. Postow, N. J. Crisona, B. J. Peter, C. D. Hardy, N. R. Cozzarelli. Topological challenges to DNA replication: Conformations at the fork. Proc. Natl. Acad. Sci. USA 98 (2001), 8219–8226. [CrossRef]
  28. L. H. Kauffman, S. Lambropoulou. On the classification of rational tangles. Advances in Applied Mathematics. 33 (2004), 199–237. [CrossRef] [MathSciNet]
  29. C. Adams. The Knot book: An elementary introduction to the mathematical theory of knots. W.H. Freeman, 1994.
  30. I. K. Darcy, R. G. Scharein, A. Stasiak. 3D visualization software to analyze topological outcomes of topoisomerase reactions. Nucleic Acids Res. 36 (2008), 3515–3521. [CrossRef] [PubMed]
  31. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu. A new polynomial invariant of knots and links. Bull.Amer.Math.Soc.(N.S.). 12 (1985), 239–246. [CrossRef] [MathSciNet]
  32. J. D. Griffith, H. A. Nash. Genetic rearrangement of DNA induces knots with a unique topology: implications for the mechanism of synapsis and crossing-over. Proc. Natl. Acad. Sci. USA 82 (1985), 3124–3128. [CrossRef]
  33. S. Trigueros, J. Arsuaga, M. E. Vazquez, D. W. Sumners, J. Roca. Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29 (2001), E67–7. [CrossRef] [PubMed]
  34. J. L. Nitiss. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 9 (2009), 338–350. [CrossRef] [PubMed]
  35. K. D. Corbett, J. M. Berger. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33 (2004), 95–118. [CrossRef] [PubMed]
  36. P. Forterre, D. Gadelle. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Research. 37 (2009), 679–692. [CrossRef] [PubMed]
  37. J. M. Berger, S. J. Gamblin, S. C. Harrison, J. C. Wang. Structure and mechanism of DNA topoisomerase II. Nature. 379 (1996), 225–232. [CrossRef] [PubMed]
  38. C. A. Austin, L. M. Fisher. DNA topoisomerases: enzymes that change the shape of DNA. Sci. Prog. 74 (1990), 147–161. [PubMed]
  39. J. J. Champoux. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70 (2001), 369–413. [CrossRef] [PubMed]
  40. J. Roca. The mechanisms of DNA topoisomerases. Trends Biochem. Sci. 20 (1995), 156–160. [CrossRef] [PubMed]
  41. F. R. Blattner, G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, Y. Shao. The complete genome sequence of Escherichia coli K-12. Science. 277 (1997), 1453–1462. [CrossRef] [PubMed]
  42. P. H. von Hippel, E. Delagoutte. Macromolecular complexes that unwind nucleic acids. Bioessays. 25 (2003), 1168–1177. [CrossRef] [PubMed]
  43. A. Worcel, S. Strogatz, D. Riley. Structure of chromatin and the linking number of DNA. Proc. Natl. Acad. Sci. USA 78 (1981), 1461–1465. [CrossRef] [PubMed]
  44. L. A. A. Nicholl, D. S. T. Nicholl. Modelling the Eukaryotic chromosome: A stepped approach. Journal of Biological Education. 21 (1987), 99–103. [CrossRef]
  45. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, J. Dekker. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326 (2009), 289–293. [CrossRef] [PubMed]
  46. A. Y. Grosberg, S. K. Nechaev, E. I. Shakhnovich. The role of topological constraints in the kinetics of collapse of macromolecules. J.Phys.France. 49 (1988), 2095–2100. [CrossRef] [EDP Sciences]
  47. M. Buenemann, P. Lenz. A geometrical model for DNA organization in bacteria. PLoS ONE. 5 (2010), e13806.
  48. T. A. Shapiro, P.T. Englund. The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49 (1995), 117–143. [CrossRef] [PubMed]
  49. J. Chen, C. A. Rauch, J. H. White, P. T. Englund, N. R. Cozzarelli. The Topology of the Kinetoplastic DNA nework. Cell, 80 (1995), 61–69. [CrossRef] [PubMed]
  50. J. Lukes, D. Lys Guilbride, J. Votypka, A. Zikova, R. Benne, P. T. Englund. Kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell. 1 (2002), 495–502. [CrossRef] [PubMed]
  51. G. W. Hatfield, C. J. Benham. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36 (2002), 175–203. [CrossRef] [PubMed]
  52. A. Vologodskii, N. R. Cozzarelli. Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70 (1996), 2548–2556. [CrossRef] [PubMed]
  53. V. V. Rybenkov, C. Ullsperger, A. V. Vologodskii, N. R. Cozzarelli. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science. 277 (1997), 690–693. [CrossRef] [PubMed]
  54. A. Vologodskii. Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res. 37 (2009), 3125–3133. [CrossRef] [PubMed]
  55. K. C. Neuman. Single-molecule measurements of DNA topology and topoisomerases. J. Biol. Chem. 285 (2010), 18967–18971. [CrossRef] [PubMed]
  56. N. Sonnenschein, M Geertz, G. Muskhelishvili, M. Hütt. Analog regulation of metabolic demand. MBC Systems Biology 5 (2011), 40-52.
  57. R. Messer, P. Staffin. Topology now! Math Assoc. of America, 2006.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.