Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 96 - 107
Section Discrete Modeling
DOI https://doi.org/10.1051/mmnp/20116606
Published online 05 October 2011
  1. L. Adleman. Molecular computation to solutions of combinatorial problems. Science, 266 (1994), 1021–1024. [CrossRef] [PubMed]
  2. J. Chen, N. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350 (1991), 631–633. [CrossRef] [PubMed]
  3. H. Dietz, S. Douglas, W. Shih. Folding DNA into twisted and curved nanoscale shapes. Science, 325 (2009), 725–730. [CrossRef] [PubMed]
  4. J. Ellis-Monaghan. Transition polynomials, double covers, and biomolecular computing. Congressus Numerantium, 166 (2004), 181–192. [MathSciNet]
  5. J. Ellis-Monaghan, G. Pangborn, L. Beaudin, N. Bruno, A. Hashimoto, B. Hopper, P. Jarvis, D. Miller. Minimal tile and bond-edge types for self-assembling DNA graphs. Manuscript.
  6. K. Freedman, J. Lee, Y. Li, D. Luo, V. Sbokeleva, P. Ke. Diffusion of single star-branched dendrimer-like DNA. J. Phys. Chem. B, 109 (2005), 9839–9842. [CrossRef] [PubMed]
  7. M. Furst, G. Gross, L. McGeoch. Finding a maximum-genus graph imbedding. J. Assoc. Comput. Mach., 35 (1988), 523–534. [CrossRef] [MathSciNet]
  8. J. Girard, A. Gilbert, D. Lewis, M. Spuches. Design optimization for DNA nanostructures. American Journal of Undergraduate Research, 9, no. 4 (2011), 15–32.
  9. Y. He, T. Ye, M. Su, C. Zhuang, A. Ribbe, W. Jiang, C. Mao. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452 (2008), 198–202. [CrossRef] [PubMed]
  10. B. Hogberg, T. Liedl, W. Shih. Folding DNA origami from a double-stranded source of scaffold. J. Am. Chem. Soc., 131 (2009), 9154–9155. [CrossRef] [PubMed]
  11. N. Jonoska, G. McColm, A. Staninska. Spectrum of a pot for DNA complexes. In DNA, 2006, 83–94.
  12. N. Jonoska, N. Seeman, G. Wu. On existence of reporter strands in DNA-based graph structures. Theoretical Computer Science, 410 (2009), 1448–1460. [CrossRef] [MathSciNet] [PubMed]
  13. T. LaBean, H. Li. Constructing novel materials with DNA. Nano Today, 2 (2007), 26–35. [CrossRef]
  14. B. Landfraf. Drawing Graphs Methods and Models. Springer-Verlag, 2001, ch. 3D Graph Drawing, 172–192.
  15. D. Luo. The road from biology to materials. Materials Today, 6 (2003), 38–43. [CrossRef]
  16. P. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 440 (2006), 297–302. [CrossRef] [PubMed]
  17. N. Seeman. Nanotechnology and the double helix. Scientific American, 290 (2004), 64–75. [CrossRef] [PubMed]
  18. N. Seeman. An overview of structural DNA nanotechnology. Mol. Biotechnol., 37 (2007), 246–257. [CrossRef] [PubMed]
  19. W. Shih, J. Quispe, G. Joyce. A 1.7 kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427 (2004), 618–621. [CrossRef] [PubMed]
  20. A. Staninska. The graph of a pot with DNA molecules. in Proceedings of the 3rd annual conference on Foundations of Nanoscience (FNANO’06), April 2006, 222–226.
  21. C. Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10 (1989), 568–576. [CrossRef] [MathSciNet]
  22. D. West. Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ, 2000.
  23. H. Yan, S. Park, G. Finkelstein, J. Reif, T. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301 (2003), 1882–1884. [CrossRef] [PubMed]
  24. Y. Zhang, N. Seeman. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc., 116 (1994), 1661–1669. [CrossRef]
  25. J. Zheng, J. Birktoft, Y. Chen, T. Wang, R. Sha, P. Constantinou, S. Ginell, C. Mao, N. Seeman. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 461 (2009), 74–77. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.