Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 6, 2011
Biomathematics Education
Page(s) 96 - 107
Section Discrete Modeling
DOI https://doi.org/10.1051/mmnp/20116606
Published online 05 October 2011
  1. L. Adleman. Molecular computation to solutions of combinatorial problems. Science, 266 (1994), 1021–1024. [CrossRef] [PubMed] [Google Scholar]
  2. J. Chen, N. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350 (1991), 631–633. [CrossRef] [PubMed] [Google Scholar]
  3. H. Dietz, S. Douglas, W. Shih. Folding DNA into twisted and curved nanoscale shapes. Science, 325 (2009), 725–730. [CrossRef] [PubMed] [Google Scholar]
  4. J. Ellis-Monaghan. Transition polynomials, double covers, and biomolecular computing. Congressus Numerantium, 166 (2004), 181–192. [MathSciNet] [Google Scholar]
  5. J. Ellis-Monaghan, G. Pangborn, L. Beaudin, N. Bruno, A. Hashimoto, B. Hopper, P. Jarvis, D. Miller. Minimal tile and bond-edge types for self-assembling DNA graphs. Manuscript. [Google Scholar]
  6. K. Freedman, J. Lee, Y. Li, D. Luo, V. Sbokeleva, P. Ke. Diffusion of single star-branched dendrimer-like DNA. J. Phys. Chem. B, 109 (2005), 9839–9842. [CrossRef] [PubMed] [Google Scholar]
  7. M. Furst, G. Gross, L. McGeoch. Finding a maximum-genus graph imbedding. J. Assoc. Comput. Mach., 35 (1988), 523–534. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Girard, A. Gilbert, D. Lewis, M. Spuches. Design optimization for DNA nanostructures. American Journal of Undergraduate Research, 9, no. 4 (2011), 15–32. [Google Scholar]
  9. Y. He, T. Ye, M. Su, C. Zhuang, A. Ribbe, W. Jiang, C. Mao. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452 (2008), 198–202. [CrossRef] [PubMed] [Google Scholar]
  10. B. Hogberg, T. Liedl, W. Shih. Folding DNA origami from a double-stranded source of scaffold. J. Am. Chem. Soc., 131 (2009), 9154–9155. [CrossRef] [PubMed] [Google Scholar]
  11. N. Jonoska, G. McColm, A. Staninska. Spectrum of a pot for DNA complexes. In DNA, 2006, 83–94. [Google Scholar]
  12. N. Jonoska, N. Seeman, G. Wu. On existence of reporter strands in DNA-based graph structures. Theoretical Computer Science, 410 (2009), 1448–1460. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. T. LaBean, H. Li. Constructing novel materials with DNA. Nano Today, 2 (2007), 26–35. [CrossRef] [Google Scholar]
  14. B. Landfraf. Drawing Graphs Methods and Models. Springer-Verlag, 2001, ch. 3D Graph Drawing, 172–192. [Google Scholar]
  15. D. Luo. The road from biology to materials. Materials Today, 6 (2003), 38–43. [CrossRef] [Google Scholar]
  16. P. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 440 (2006), 297–302. [CrossRef] [PubMed] [Google Scholar]
  17. N. Seeman. Nanotechnology and the double helix. Scientific American, 290 (2004), 64–75. [CrossRef] [PubMed] [Google Scholar]
  18. N. Seeman. An overview of structural DNA nanotechnology. Mol. Biotechnol., 37 (2007), 246–257. [CrossRef] [PubMed] [Google Scholar]
  19. W. Shih, J. Quispe, G. Joyce. A 1.7 kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427 (2004), 618–621. [CrossRef] [PubMed] [Google Scholar]
  20. A. Staninska. The graph of a pot with DNA molecules. in Proceedings of the 3rd annual conference on Foundations of Nanoscience (FNANO’06), April 2006, 222–226. [Google Scholar]
  21. C. Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10 (1989), 568–576. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. West. Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ, 2000. [Google Scholar]
  23. H. Yan, S. Park, G. Finkelstein, J. Reif, T. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301 (2003), 1882–1884. [CrossRef] [PubMed] [Google Scholar]
  24. Y. Zhang, N. Seeman. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc., 116 (1994), 1661–1669. [CrossRef] [Google Scholar]
  25. J. Zheng, J. Birktoft, Y. Chen, T. Wang, R. Sha, P. Constantinou, S. Ginell, C. Mao, N. Seeman. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 461 (2009), 74–77. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.