Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 1 - 11
DOI https://doi.org/10.1051/mmnp/20127301
Published online 06 June 2012
  1. Centers for Disease Control and Prevention. Dengue, (2011). Retrieved from http://www.cdc.gov/dengue/ [Google Scholar]
  2. D. Alonso, A. McKane, M. Pascual. Stochastic Amplification in Epidemics. Journal of the Royal Society Interface, (2006), 4, 575-582. [CrossRef] [Google Scholar]
  3. D. J. Gubler. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology, (2002), 10, 100–103. [CrossRef] [PubMed] [Google Scholar]
  4. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, (1976), 22, 403–434. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. D. T. Gillespie. Monte Carlo simulation of random walks with residence time dependent transition probability rates. Journal of Computational Physics, (1978), 28, 395–407. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. J. D. Gubler, W. Suharyono, R. Tan, M. Abidin, A. Sie. Viraemia in patients with naturally acquired dengue infection. Bull. World Health Organ., (1981), 59, 623–630. [PubMed] [Google Scholar]
  7. J. E. Doedel, B. Oldeman. AUTO 07P - Continuation and bifurcation software for ordinary differential equations. Technical Report : Concordia University, Montreal, Canada, (2009). Retrieved from http://indy.cs.concordia.ca/auto/ [Google Scholar]
  8. J. S. Mackenzie, D. J. Gubler, L. R. Petersen. Emerging flaviviruses : the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine Review, (2004), 12, S98–S109. [CrossRef] [PubMed] [Google Scholar]
  9. M. Aguiar, B. W. Kooi, N. Stollenwerk. Epidemiology of Dengue Fever : A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions. Math. Model. Nat. Phenom., (2008), 4, 48–70. [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Aguiar, N. Stollenwerk, B. W. Kooi. Torus bifurcations, isolas and chaotic attractors in a simple dengue model with ADE and temporary cross immunity. International Journal of Computer Mathematics, (2009), 86, 1867–1877. [CrossRef] [Google Scholar]
  11. M. Aguiar, S. Ballesteros, B. W. Kooi, N. Stollenwerk. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections : complex dynamics and its implications for data analysis. Accepted for publication in Journal of Theoretical Biology, (2011). [Google Scholar]
  12. M. G. Guzmán et al. Dengue : a continuing global threat. Nature Reviews Microbiology, (2010), 8, S7–S16. [CrossRef] [PubMed] [Google Scholar]
  13. M. J. Keeling, J. V. Ross. On methods for studying stochastic disease dynamics. Journal of the Royal Society Interface, (2008), 5, 171–181. [CrossRef] [Google Scholar]
  14. N. Ferguson, R. Anderson, S. Gupta. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA, (1999), 96, 790–94. [CrossRef] [Google Scholar]
  15. N. G. van Kampen. Stochastic Processes in Physics and Chemistry. (North-Holland, Amsterdam, 1992). [Google Scholar]
  16. N. Stollenwerk, V. A. A. Jansen. Evolution towards criticality in an epidemiological model for meningococcal disease. Physics Letters A, (2003b), 317, 87–96. [CrossRef] [Google Scholar]
  17. N. Stollenwerk, M. C. J. Maiden, V. A. A. Jansen, V.A.A. Diversity in pathogenicity can cause outbreaks of menigococcal disease. Proc. Natl. Acad. Sci. USA, (2004), 101, 10229–10234. [CrossRef] [Google Scholar]
  18. N. Stollenwerk, V. V. A. Jansen. Population biology and criticality (Imperial College Press, London, 2010). [Google Scholar]
  19. O. Chareonsook et al. Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiol. Infect., (1999), 122, 161–166. [CrossRef] [PubMed] [Google Scholar]
  20. Pediatric Dengue Vaccine Initiative. International Vaccine Institute (IVI). Global Burden of Dengue, (2011). Retrieved from http://www.pdvi.org/about_dengue/GBD.asp [Google Scholar]
  21. Pers comm. : Francisco Lemos, Secretaria de Estado de Saúde de Minas Gerais, Brazil ; Sônia Diniz, Fundação Ezequiel Dias, Minas Gerais, Brazil and Scott Halstead, Pedriatic Dengue Vaccine Initiative, Maryland, USA. [Google Scholar]
  22. United Nations Population Division World Urbanization Prospects : The 2009 Revision Population Database, (2011). Retrieved from http://www.un.org/esa/population/unpop.htm [Google Scholar]
  23. S. B. Halstead et al. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. V. Epidemiologic observations outside Bangkok. Am. J. Trop. Med. Hyg., (1969), 18, 1022–33. [PubMed] [Google Scholar]
  24. S. B. Halstead. Antibody-dependent Enhancement of Infection : A Mechanism for Indirect Virus Entry into Cells. Cellular Receptors for Animal Viruses, 28, Chapter 25, 493–516. (Cold Spring Harbor Laboratory Press, 1994). [Google Scholar]
  25. S. B. Halstead. Immune enhancement of viral infection. Progress in Allergy, (1982), 31, 301–364. [PubMed] [Google Scholar]
  26. S. B. Halstead. Neutralization and antibody-dependent enhancement of dengue viruses. Advances in Virus Research, (2003), 60, 421–467. [CrossRef] [PubMed] [Google Scholar]
  27. S. Matheus et al. Discrimination between Primary and Secondary Dengue Virus Infection by an Immunoglobulin G Aviditnoy Test Using a Single Acute-Phase Serum Sample. Journal of Clinical Microbiology, (2005), 43, 2793–2797. [CrossRef] [PubMed] [Google Scholar]
  28. W. Dejnirattisai et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science, (2010), 328, 745–748. [CrossRef] [PubMed] [Google Scholar]
  29. Wikipedia contributors. Wikipedia, The Free Encyclopedia. Provinces of Thailand, (2011). Retrieved from http://en.wikipedia.org/wiki/Provinces_of_Thailand [Google Scholar]
  30. World Health Organization. Dengue and Dengue Hemorrhagic Fever, Fact sheet 117, (2009). Retrieved from http://www.who.int/mediacentre/factsheets/fs117/en/ [Google Scholar]
  31. Y. Nagao, K. Koelle. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc. Natl. Acad. Sci, (2008), 105, 2238–2243. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.