Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 1 - 11
Published online 06 June 2012
  1. Centers for Disease Control and Prevention. Dengue, (2011). Retrieved from
  2. D. Alonso, A. McKane, M. Pascual. Stochastic Amplification in Epidemics. Journal of the Royal Society Interface, (2006), 4, 575-582. [CrossRef]
  3. D. J. Gubler. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends in Microbiology, (2002), 10, 100–103. [CrossRef] [PubMed]
  4. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, (1976), 22, 403–434. [NASA ADS] [CrossRef] [MathSciNet]
  5. D. T. Gillespie. Monte Carlo simulation of random walks with residence time dependent transition probability rates. Journal of Computational Physics, (1978), 28, 395–407. [NASA ADS] [CrossRef] [MathSciNet]
  6. J. D. Gubler, W. Suharyono, R. Tan, M. Abidin, A. Sie. Viraemia in patients with naturally acquired dengue infection. Bull. World Health Organ., (1981), 59, 623–630. [PubMed]
  7. J. E. Doedel, B. Oldeman. AUTO 07P - Continuation and bifurcation software for ordinary differential equations. Technical Report : Concordia University, Montreal, Canada, (2009). Retrieved from
  8. J. S. Mackenzie, D. J. Gubler, L. R. Petersen. Emerging flaviviruses : the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine Review, (2004), 12, S98–S109. [CrossRef] [PubMed]
  9. M. Aguiar, B. W. Kooi, N. Stollenwerk. Epidemiology of Dengue Fever : A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions. Math. Model. Nat. Phenom., (2008), 4, 48–70. [CrossRef] [EDP Sciences]
  10. M. Aguiar, N. Stollenwerk, B. W. Kooi. Torus bifurcations, isolas and chaotic attractors in a simple dengue model with ADE and temporary cross immunity. International Journal of Computer Mathematics, (2009), 86, 1867–1877. [CrossRef]
  11. M. Aguiar, S. Ballesteros, B. W. Kooi, N. Stollenwerk. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections : complex dynamics and its implications for data analysis. Accepted for publication in Journal of Theoretical Biology, (2011).
  12. M. G. Guzmán et al. Dengue : a continuing global threat. Nature Reviews Microbiology, (2010), 8, S7–S16. [CrossRef] [PubMed]
  13. M. J. Keeling, J. V. Ross. On methods for studying stochastic disease dynamics. Journal of the Royal Society Interface, (2008), 5, 171–181. [CrossRef]
  14. N. Ferguson, R. Anderson, S. Gupta. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA, (1999), 96, 790–94. [CrossRef]
  15. N. G. van Kampen. Stochastic Processes in Physics and Chemistry. (North-Holland, Amsterdam, 1992).
  16. N. Stollenwerk, V. A. A. Jansen. Evolution towards criticality in an epidemiological model for meningococcal disease. Physics Letters A, (2003b), 317, 87–96. [CrossRef]
  17. N. Stollenwerk, M. C. J. Maiden, V. A. A. Jansen, V.A.A. Diversity in pathogenicity can cause outbreaks of menigococcal disease. Proc. Natl. Acad. Sci. USA, (2004), 101, 10229–10234. [CrossRef]
  18. N. Stollenwerk, V. V. A. Jansen. Population biology and criticality (Imperial College Press, London, 2010).
  19. O. Chareonsook et al. Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiol. Infect., (1999), 122, 161–166. [CrossRef] [PubMed]
  20. Pediatric Dengue Vaccine Initiative. International Vaccine Institute (IVI). Global Burden of Dengue, (2011). Retrieved from
  21. Pers comm. : Francisco Lemos, Secretaria de Estado de Saúde de Minas Gerais, Brazil ; Sônia Diniz, Fundação Ezequiel Dias, Minas Gerais, Brazil and Scott Halstead, Pedriatic Dengue Vaccine Initiative, Maryland, USA.
  22. United Nations Population Division World Urbanization Prospects : The 2009 Revision Population Database, (2011). Retrieved from
  23. S. B. Halstead et al. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. V. Epidemiologic observations outside Bangkok. Am. J. Trop. Med. Hyg., (1969), 18, 1022–33. [PubMed]
  24. S. B. Halstead. Antibody-dependent Enhancement of Infection : A Mechanism for Indirect Virus Entry into Cells. Cellular Receptors for Animal Viruses, 28, Chapter 25, 493–516. (Cold Spring Harbor Laboratory Press, 1994).
  25. S. B. Halstead. Immune enhancement of viral infection. Progress in Allergy, (1982), 31, 301–364. [PubMed]
  26. S. B. Halstead. Neutralization and antibody-dependent enhancement of dengue viruses. Advances in Virus Research, (2003), 60, 421–467. [CrossRef] [PubMed]
  27. S. Matheus et al. Discrimination between Primary and Secondary Dengue Virus Infection by an Immunoglobulin G Aviditnoy Test Using a Single Acute-Phase Serum Sample. Journal of Clinical Microbiology, (2005), 43, 2793–2797. [CrossRef] [PubMed]
  28. W. Dejnirattisai et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science, (2010), 328, 745–748. [CrossRef] [PubMed]
  29. Wikipedia contributors. Wikipedia, The Free Encyclopedia. Provinces of Thailand, (2011). Retrieved from
  30. World Health Organization. Dengue and Dengue Hemorrhagic Fever, Fact sheet 117, (2009). Retrieved from
  31. Y. Nagao, K. Koelle. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc. Natl. Acad. Sci, (2008), 105, 2238–2243. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.