Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 12 - 27
Published online 06 June 2012
  1. C. Almeder, G. Feichtinger, W. C. Sanderson, V. M. Veliov. Prevention and medication of HIV/AIDS : the case of Botswana, Central European J. Oper. Res. 15 (2007), 47–61. [CrossRef]
  2. S. Anita. Analysis and Control of Age-Dependent Population Dynamics, Kluwer, Boston, MA, 2000.
  3. S. Anita, M. Iannelli, M.Y. Kim, E.J. Park. Optimal harvesting for periodic age-dependent population dynamics, SIAM J. Appl. Math. 58 (1999), 1648–1666.
  4. B. Armbruster, M. L. Brandeau. Optimal mix of screening and contact tracing for endemic diseases, Math. Biosci. 209 (2007), 386–402. [CrossRef] [MathSciNet] [PubMed]
  5. F. Ball, N. G. Becker. Control of transmission with two types of infection, Math. Biosci. 200 (2006), 170–187. [CrossRef] [MathSciNet] [PubMed]
  6. V. Barbu, M. Iannelli. Controlling the SIS Epidemics, Proceedings of the Conference on Mathematical Models in Medical and Health Sciences, Nashville, Tennessee, edited by M. A. Horn, G. Simonett, G. F. Webb, 1998.
  7. V. Barbu, M. Iannelli. Optimal control of population dynamics, J. Optim. Theory Appl. 102 (1999), 1–14. [CrossRef]
  8. H. Behncke. Optimal control of deterministic epidemics, Optim. Control Appl. Meth. 21 (2000), 269–285. [CrossRef] [MathSciNet]
  9. K. W. Blayneh, A. B. Gumel, S. Lenhart, T. Clayton. Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus, Bulletin of Mathematical Biology, 72 (2010), 1006–1028. [CrossRef] [MathSciNet] [PubMed]
  10. C. Castillo-Chavez, Z. Feng. Global stability of an age structured model for TB and its applications to optimal vaccination strategies, Math. Biosci. 151 (1998), 135–154. [CrossRef] [PubMed]
  11. G. Feichtinger, V. M. Veliov, T. Tsachev. Maximum principle for age and duration structured systems : a tool for optimal prevention and treatment of HIV, Mathematical Population Studies, 11 (2004), 3–28. [CrossRef]
  12. Z. Feng, H. R. Thieme. Recurrent outbreaks of childhood diseases revisited : the impact of isolation, Math. Biosci. 128 (1995), 93–130. [CrossRef] [MathSciNet] [PubMed]
  13. K. R. Fister, S. Lenhart. Optimal control of a competitive system with age-structure, J. Math. Anal. Appl. 291 (2004), 526–537. [CrossRef] [MathSciNet]
  14. K.P. Hadeler, J. Muller. Optimal harvesting and optimal vaccination, Math. Biosci. 206 (2007), 249–272. [CrossRef] [MathSciNet] [PubMed]
  15. E. Hansen, T. Day. Optimal control of epidemics with limited resources, J. Math. Biol. 62 (2011), 423–451. [CrossRef] [MathSciNet] [PubMed]
  16. H. W. Hethcote, J. A. York. Gonorrhea Transmission and Control, Lectures Notes in Biomathematics 56, Springer Verlag 1984.
  17. H. W. Hethcote. Optimal ages of vaccination for measles, Math. Biosci. 89 (1988), 29–52. [CrossRef]
  18. H. W. Hethcote, P. Waltman. Optimal vaccination schedules in a deterministic epidemic model, Math. Biosci. 18 (1973), 365–381. [CrossRef]
  19. N. Hritonenko, Y. Yatsenko. The structure of optimal time- and age-dependent harvesting in the Lotka McKendrik population model, Math. Biosci. 208 (2007), 48–62. [CrossRef] [MathSciNet] [PubMed]
  20. J. M. Hyman, J. Li, E. A. Stanley. Modeling the impact of random screening and contact tracing in reducing the spread of HIV, Math. Biosci. 181 (2003), 17–54. [CrossRef] [MathSciNet] [PubMed]
  21. E. Jung, S. Lenhart, Z. Feng. Optimal Control of Treatments in a Two Strain Tuberculosis Model, Discrete and Continuous Dynamical Systems 2 (2002), 473–482. [CrossRef] [MathSciNet]
  22. S. M. Kassa, A. Ouhinou. Epidemiological models with prevalence dependent endogenous self-protection measure, Math. Biosci. 229 (2011), 41–49. [CrossRef] [MathSciNet] [PubMed]
  23. X. Liu, P. Stechlinski. Pulse and constant control schemes for epidemic models with seasonality, Nonlinear Analysis : RWA 12 (2011), 931–946. [CrossRef]
  24. F.A. Milner and R. Zhao. A new mathematical model of syphilis, Math. Model. Nat. Phenom. 5 (2010), 96–108. [CrossRef] [EDP Sciences]
  25. R. Morton, K. H. Wickwire. On the optimal control of a deterministic epidemic, Adv. Appl. Prob. 6 (1974), 622–635. [CrossRef]
  26. A. Mubayi, C. Kribs Zaleta, M. Martcheva, C. Castillo-Chavez. A cost based comparison of quarantine strategies for new emerging diseases, Math. Biosc. Eng. 7 (2010), 687–717. [CrossRef]
  27. J. Muller, M. Kretzschmar, K. Dietz. Contact tracing in stochastic and deterministic epidemic models, Math. Biosci. 164 (2000), 39–64. [CrossRef] [MathSciNet] [PubMed]
  28. M. L. Ndeffo Mbah, C. A. Gilligan. Optimization of control strategies for epidemics in heterogeneous populations with symmetric and asymmetric transmission, J. Theor. Biology 262 (2010), 757–763. [CrossRef]
  29. J. L. Sanders. Quantitative guidelines for communicable disease control programs, Biometrics, 27 (1971), 883–893. [CrossRef] [PubMed]
  30. A. J. Terry. Pulse Vaccination Strategies in a Metapopulation SIR model, Math. Biosc. Eng. 7 (2010), 455–477. [CrossRef]
  31. K. H. Wickwire. A note on the optimal control of carrier-borne epidemics, J. Appl. Prob. 12 (1975), 565–568. [CrossRef]
  32. K. H. Wickwire. Optimal isolation policies for deterministic and stochastic epidemics, Math. Biosci. 26 (1975), 325–346. [CrossRef]
  33. K. H. Wickwire. Mathematical models for the control of pests and infectious diseases : a survey, Theor. Pop. Biol. 11 (1977), 182–238. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.