Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 107 - 125
Published online 12 December 2012
  1. P. Achermann, H. Kunz. Modeling circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators: Phase shifts and phase response curves. J Biol Rhythm, 14(6):460–468, 1999. [CrossRef] [Google Scholar]
  2. S. Becker-Weimann, J. Wolf, H. Herzel, A. Kramer. Modeling feedback loops of the mammalian circadian oscillator. Biophys J, 87(5):3023–3034, 2004. [CrossRef] [PubMed] [Google Scholar]
  3. F. Bekkal Brikci, J. Clairambault, B. Perthame. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math and Comp Modelling, 47(7–8): 699–713, 2008. [Google Scholar]
  4. S. Bernard, H. Herzel. Why do cells cycle with a 24 hour period ? Genome Inform Ser., 17(1):72–79, 2006. [Google Scholar]
  5. S. Bernard, D. Gonze, B. Cǎjavec, H. Herzel, A. Kramer. Synchronization-induced rhythmicity of circadian oscillations in the suprachiasmatic nucleus. PLoS Comput Biol, 17(1):72–79, 2006. [Google Scholar]
  6. S. Bernard, B. Căjavec Bernard, F. Lévi, H. Herzel. Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. LoS Comput Biol, 6(3):e1000712, 2010. doi:10.1371/journal.pcbi.1000712 [CrossRef] [Google Scholar]
  7. F. Billy, J. Clairambault, O. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. Math Meth and Mod in Biomed, 257–299, 2012. [Google Scholar]
  8. A. Chauhan, S. Lorenzen, H. Herzel, S. Bernard. Regulation of mammalian cell cycle progression in the regenerating liver. J Theor Biol, 283(1):103–12, 2011. [Google Scholar]
  9. J. Clairambault, S. Gaubert, T. Lepoutre. Circadian rhythm and cell population growth. Math Comput Model, 53(7-8):1558–1567, 2011. [Google Scholar]
  10. J. Clairambault, S. Gaubert, T. Lepoutre. Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models. Math Model Nat Phenom, 4(3):183–209, 2009. [Google Scholar]
  11. J. Clairambault, S. Gaubert, B. Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. C R Math, 345(10):549–554, 2007. [Google Scholar]
  12. J. Clairambault, P. Michel, B. Perthame. Circadian rhythm and tumour growth. C R Math, 342(1):17–22, 2006. [Google Scholar]
  13. C. Czeisler, R. Kronauer, J. Allan, J. Duffy, M. Jewett, E. Brown, J. Ronda. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. science, 244(4910):1328–1333, 1989. [CrossRef] [PubMed] [Google Scholar]
  14. M. Davidich, S. Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One, 3(2):e1672, 2008. [CrossRef] [PubMed] [Google Scholar]
  15. M. Doumic. Analysis of a population Model Structured by the Cells Molecular Contents. MMNP, 3(2): 121–152, 2007. [Google Scholar]
  16. J. E. Ferrell, T. Y.-c. Tsai, Q. Yang. Modeling the cell cycle: why do certain circuits oscillate ? Cell, 144(6):874–85, 2011. [CrossRef] [PubMed] [Google Scholar]
  17. PC. da Fonseca, J. He, EP. Morris. Molecular model of the human 26S proteasome. Mol Cell, 46(1):54-66, 2012. [CrossRef] [PubMed] [Google Scholar]
  18. D. Forger, M. Jewett, R. Kronauer. A simpler model of the human circadian pacemaker. J Biol Rhythm, 14(6):533–538, 1999. [Google Scholar]
  19. D. Forger, R. Kronauer. Reconciling mathematical models of biological clocks by averaging on approximate manifolds. SIAM J Appl Math., pages 1281–1296, 2002. [Google Scholar]
  20. D. B. Forger, C. S. Peskin. A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA, 100(25):14806–14811, 2003. [CrossRef] [Google Scholar]
  21. C. Gérard, A. Goldbeter. A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle. Interface Focus, 1(1):24–35, 2011. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. S. Gery, HP Koeffler. Circadian rhythms and cancer. Cell Cycle, 9:1097–1103, 2010. [CrossRef] [PubMed] [Google Scholar]
  23. C. Gérard, A. Goldbeter. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms. Plos Comp Biol, 8(5): e1002516. [Google Scholar]
  24. A. Goldbeter, C. Ge, C. Gérard. Temporal self-organization of the Cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA, 1–6, 2009. [Google Scholar]
  25. D. Gonze. Modeling circadian clocks: From equations to oscillations. Cent Eur J Biol, 6(5):699–711, 2011. [CrossRef] [Google Scholar]
  26. B.C. Goodwin. Temporal Organization in Cells. A Dynamic Theory of Cellular Control Processes. New York: Academic Press, 1963. [Google Scholar]
  27. B.C. Goodwin. Oscillatory behavior in enzymatic control processes. Advances in Enzyme Regulation, 3:425–438, 1965. [Google Scholar]
  28. T. Hunt. The Life Scientific, BBC Radio 4 podcast, 13/12/2011. [Google Scholar]
  29. J.F.C. Kingman. A convexity property of positive matrices. Quart. J. Math. Oxford, (2)12:283–284, 1961. [CrossRef] [Google Scholar]
  30. T. Kubo, K. Ozasa, K. Mikami, K. Wakai, Y. Fujino, Y. Watanabe, T. Miki, M. Nakao, K. Hayashi, K. Suzuki, et al. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the japan collaborative cohort study. Am J Epidemiol, 164(6):549–555, 2006. [CrossRef] [PubMed] [Google Scholar]
  31. H. Kunz, P. Achermann. Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. J Theor Biol, 224(1):63–78, 2003. [CrossRef] [PubMed] [Google Scholar]
  32. J.-C. Leloup, A. Goldbeter. Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci USA, 100(12):7051–7056, 2003. [CrossRef] [Google Scholar]
  33. T. Lepoutre. Analysis and modelling of growth and motion phenomenon from biology. PHD in applied mathematics. Université Pierre et Marie Curie Paris (France), 2007–2009. [Google Scholar]
  34. F. Lévi, Circadian chronotherapy for human cancers. The Lancet Oncology, 2(5), 307–315, 2001, doi:10.1016/S1470-2045(00)00326-0 [CrossRef] [PubMed] [Google Scholar]
  35. F. Lévi. Cancer chronotherapy. J of Pharmacy and Pharmacol, 51(8), 891–898, 1999. [CrossRef] [Google Scholar]
  36. E.S. Maywood, A.B. Reddy, G.K.Y. Wong, J.S. O’Neill, J.A. O’Brien, D.G. McMahon, A.J. Harmar, H. Okamura, M.H. Hastings. Synchronisation and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol, 16:599–605, 2006. [CrossRef] [PubMed] [Google Scholar]
  37. M.C. Mackey. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 51(5):941–56, 1978. [PubMed] [Google Scholar]
  38. H. Mirsky, A. Liu, D. Welsh, S. Kay, F. Doyle. A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci USA, 106(27):11107–11112, 2009. [CrossRef] [Google Scholar]
  39. B. Novak, Z. Pataki, A. Ciliberto, J.J. Tyson. Mathematical model of the cell division cycle of fission yeast. Chaos, 11(1):277–286, 2001. [CrossRef] [PubMed] [Google Scholar]
  40. B. Novak, J.J. Tyson. A model for restriction point control of the mammalian cell cycle. J Theor Biol, 230(4):563–579, 2004. [Google Scholar]
  41. B.F. Pando, A. van Oudenaarden. Coupling cellular oscillators-circadian and cell division cycles in cyanobacterial cells. Curr Opin Genet Dev, 20:1–6, 2010. [CrossRef] [PubMed] [Google Scholar]
  42. B. Perthame. Transport equations in biology. Birkhauser, 2007. [Google Scholar]
  43. J. R. Pomerening, E. D. Sontag, J. E. Ferrell. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol, 5(4):346–51, 2003. [Google Scholar]
  44. K. Rompala, R. Rand, H. Howland. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms. Commun Nonlinear Sci, 12(5):794–803, 2007. [CrossRef] [MathSciNet] [Google Scholar]
  45. P. Ruoff, C.M. M Vindjevik, L. Rensing. The Goodwin model simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. J. Theor. Biol., 209:29–42, 2001. [CrossRef] [PubMed] [Google Scholar]
  46. S. Sahar, P. Sassone-Corsi. Circadian rhythms and memory formation: regulation by chromatin remodeling. Front Mol Neurosci, 5–37, 2006. Published online 2012 March 26. doi: 10.3389/fnmol.2012.00037. [Google Scholar]
  47. M. Swat, A. Kel, H. Herzel. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics, 20(10):1506–1511, 2004. [CrossRef] [PubMed] [Google Scholar]
  48. J.J. Tyson, B. Novak. Temporal organization of the cell cycle. Curr Biol 18, R759-R768, 2008. [Google Scholar]
  49. J.J. Tyson, K.C. Chen, B. Novak. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Op in Cell Biol, 15:221–231, 2003. [Google Scholar]
  50. B. Van der Pol, J. Van der Mark. Frequency demultiplication. Nature, 120:363–364, 1927. [Google Scholar]
  51. A.B. Webb, N. Angelo, J.E. Huettner, E.D. Herzog. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA, 106(38):16493–16498, 2009. [CrossRef] [Google Scholar]
  52. D. Welsh, J. Takahashi, S. Kay. Suprachiasmatic nucleus: cell autonomy and network properties. Ann Rev Physiol, 72:551–577, 2010. [CrossRef] [PubMed] [Google Scholar]
  53. P.O. Westermark, D.K. Welsh, H. Okamura, H. Herzel. Quantification of Circadian Rhythms in Single Cells. PLoS Comput Biol, 5(11):e1000580, 2009. [CrossRef] [PubMed] [Google Scholar]
  54. R. Wever. Zum Mechanismus der Biologischen 24-Stunden-Periodik. Biol Cybern, 1(4):139–154, 1962. [Google Scholar]
  55. R. Wever. Zum Mechanismus der Biologischen 24-Stunden-Periodik II. Biol Cybern, 1(6):213–231, 1963. [Google Scholar]
  56. S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, H Okamura, H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science, 302:1408–1412, 2003. [CrossRef] [PubMed] [Google Scholar]
  57. E. E. Zhang, S. A. Kay. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol, 11(11):764–776, 2010. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.