Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 95 - 106
Published online 12 December 2012
  1. A. Aulehla, O. Pourquié. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol., 2 (2010), a000869. [CrossRef] [PubMed]
  2. A. Aulehla, C. Wehrle, B. Brand-Saberi, R. Kemler, A. Gossler, B. Kanzler, B. G. Herrman. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell., 4 (2003), 395-406. [CrossRef] [PubMed]
  3. A. Aulehla, W. Wiegrabe, V. Baubet, M. B. Wahl, X. Deng, M. Taketo, M. Lewandoski, O. Pourquié. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell. Biol., 10 (2008), 186-193. [CrossRef] [PubMed]
  4. M. Campanelli, T. Gedeon. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein. PLoS Comp. Biol., 6 (2010), e1000728. [CrossRef]
  5. M. Campanelli. Multicellular mathematical models of somitogenesis. PhD thesis Montana State University (2009), ISBN 9781109317299.
  6. B. Christ, C. P. Ordahl. Early stages of chick somite development. Anat. Embryol., 191 (1995), 381-396. [CrossRef] [PubMed]
  7. O. Cinquin. Understanding the somitogenesis clock: what’s missing ? Mech. Dev., 124 (2007), 501-517. [CrossRef] [PubMed]
  8. J. Cooke, E. C. Zeeman. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol., 58 (1976), 455-476. [CrossRef] [PubMed]
  9. M. L. Dequéant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquié. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314 (2006), 1595-1598. [CrossRef] [PubMed]
  10. M. L. Dequéant, O. Pourquié. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Gen., 9 (2008), 370-382. [CrossRef] [PubMed]
  11. R. Diez del Corral, I. Olivera-Martínez, A. Goriely, E. Gale, M. Maden, K. Storey. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron, 40 (2003), 65-79. [CrossRef] [PubMed]
  12. J. Dubrulle, O. Pourquié. Coupling segmentation to axis formation. Dev., 131 (2004), 5783-5793. [CrossRef]
  13. J. Dubrulle, O. Pourquié. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature, 427 (2004), 419-422. [CrossRef] [PubMed]
  14. B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. 1st Ed. Society for Industrial Mathematics. Philadelphia (2002).
  15. S. Gibb, M. Maroto, J. K. Dale. The segmentation clock mechanism moves up a notch. Trends Cell Biol., 20 (2010), 593-600. [CrossRef] [PubMed]
  16. S. Gibb, A. Zagorska, K. Melton, G. Tenin, I. Vacca, P. Trainor, M. Maroto, J. K. Dale. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev. Biol., 330 (2009), 21-31. [CrossRef] [PubMed]
  17. F. Giudicelli, E. M. Özbudak, G. J. Wright, J. Lewis. Setting the tempo in development: An investigation of the zebrafish somite clock mechanism. PLoS Biol., 5 (2007), 1309-1323. [CrossRef]
  18. A. Goldbeter, D. Gonze, O. Pourquié. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn., 236 (2007), 1495-1508. [CrossRef] [PubMed]
  19. A. Goldbeter, O. Pourquié. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J. Theor. Biol., 252 (2008), 574-585. [CrossRef] [PubMed]
  20. C. Gomez, E. M. Özbudak, J. Wunderlich, D. Baumann, J. Lewis, O. Pourquié. Control of segment number in vertebrate embryos. Nat. Lett., 454 (2008), 335-339. [CrossRef]
  21. A. Ishikawa, S. Kitajima, Y. Takahashi, H. Kokub, J. Kanno, T. Inoue, Y. Saga. Mouse Nkd2, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech. Dev., 121 (2004), 1443-1453. [CrossRef] [PubMed]
  22. P. B. Jensen, L. Pedersen, S. Krishna, M. H. Jensen. A Wnt oscillator model for somitogenesis. Biophys. J., 98 (2010), 943-950. [CrossRef] [PubMed]
  23. J. Lewis. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol., 13 (2003), 1398-1408. [CrossRef] [PubMed]
  24. I. Palmeirim, D. Henrique, D. Ish-Horowicz, O. Pourquié. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell, 91 (1997), 639-648. [CrossRef] [PubMed]
  25. P. C. G. Rida, N. Le Minh, Y. J. Jiang. A Notch feeling of somite segmentation and beyond. Dev. Biol., 265 (2004), 2-22. [CrossRef] [PubMed]
  26. J. G. Rodríguez-González, M. Santillán, A. C. Fowler, M. C. Mackey. The segmentation clock in mice: interaction between the Wnt and Notch signalling pathways. J. Theor. Biol., 248 (2007), 37-47. [CrossRef] [PubMed]
  27. Y. Saga, H. Takeda. The making of the somite: Molecular events in vertebrate segmentation. Nat. Rev. Gen., 2 (2001), 835-845. [CrossRef]
  28. M. Santillán, M. C. Mackey. A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis. PLoS ONE, 3 (2008), e1561. [CrossRef] [PubMed]
  29. M. B. Wahl, C. Deng, M. Lewandoski, O. Pourquié. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Dev., 134 (2007), 4033-4041. [CrossRef]
  30. Y. Yasuhiko, S. Haraguchi, S. Kitajima, Y. Takahashi, J. Kanno, Y. Saga. Tbx6-mediated notch signaling controls somite-specific mesp2 expression. Proc. Natl. Acad. Sci. USA, 103 (2006), 3651-6. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.