Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 95 - 106
DOI https://doi.org/10.1051/mmnp/20127605
Published online 12 December 2012
  1. A. Aulehla, O. Pourquié. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol., 2 (2010), a000869. [CrossRef] [PubMed] [Google Scholar]
  2. A. Aulehla, C. Wehrle, B. Brand-Saberi, R. Kemler, A. Gossler, B. Kanzler, B. G. Herrman. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell., 4 (2003), 395-406. [CrossRef] [PubMed] [Google Scholar]
  3. A. Aulehla, W. Wiegrabe, V. Baubet, M. B. Wahl, X. Deng, M. Taketo, M. Lewandoski, O. Pourquié. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell. Biol., 10 (2008), 186-193. [CrossRef] [PubMed] [Google Scholar]
  4. M. Campanelli, T. Gedeon. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein. PLoS Comp. Biol., 6 (2010), e1000728. [CrossRef] [Google Scholar]
  5. M. Campanelli. Multicellular mathematical models of somitogenesis. PhD thesis Montana State University (2009), ISBN 9781109317299. [Google Scholar]
  6. B. Christ, C. P. Ordahl. Early stages of chick somite development. Anat. Embryol., 191 (1995), 381-396. [CrossRef] [PubMed] [Google Scholar]
  7. O. Cinquin. Understanding the somitogenesis clock: what’s missing ? Mech. Dev., 124 (2007), 501-517. [CrossRef] [PubMed] [Google Scholar]
  8. J. Cooke, E. C. Zeeman. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol., 58 (1976), 455-476. [CrossRef] [PubMed] [Google Scholar]
  9. M. L. Dequéant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquié. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314 (2006), 1595-1598. [CrossRef] [PubMed] [Google Scholar]
  10. M. L. Dequéant, O. Pourquié. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Gen., 9 (2008), 370-382. [Google Scholar]
  11. R. Diez del Corral, I. Olivera-Martínez, A. Goriely, E. Gale, M. Maden, K. Storey. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron, 40 (2003), 65-79. [CrossRef] [PubMed] [Google Scholar]
  12. J. Dubrulle, O. Pourquié. Coupling segmentation to axis formation. Dev., 131 (2004), 5783-5793. [CrossRef] [Google Scholar]
  13. J. Dubrulle, O. Pourquié. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature, 427 (2004), 419-422. [CrossRef] [PubMed] [Google Scholar]
  14. B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. 1st Ed. Society for Industrial Mathematics. Philadelphia (2002). [Google Scholar]
  15. S. Gibb, M. Maroto, J. K. Dale. The segmentation clock mechanism moves up a notch. Trends Cell Biol., 20 (2010), 593-600. [CrossRef] [PubMed] [Google Scholar]
  16. S. Gibb, A. Zagorska, K. Melton, G. Tenin, I. Vacca, P. Trainor, M. Maroto, J. K. Dale. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev. Biol., 330 (2009), 21-31. [CrossRef] [PubMed] [Google Scholar]
  17. F. Giudicelli, E. M. Özbudak, G. J. Wright, J. Lewis. Setting the tempo in development: An investigation of the zebrafish somite clock mechanism. PLoS Biol., 5 (2007), 1309-1323. [CrossRef] [Google Scholar]
  18. A. Goldbeter, D. Gonze, O. Pourquié. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn., 236 (2007), 1495-1508. [CrossRef] [PubMed] [Google Scholar]
  19. A. Goldbeter, O. Pourquié. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J. Theor. Biol., 252 (2008), 574-585. [CrossRef] [PubMed] [Google Scholar]
  20. C. Gomez, E. M. Özbudak, J. Wunderlich, D. Baumann, J. Lewis, O. Pourquié. Control of segment number in vertebrate embryos. Nat. Lett., 454 (2008), 335-339. [CrossRef] [Google Scholar]
  21. A. Ishikawa, S. Kitajima, Y. Takahashi, H. Kokub, J. Kanno, T. Inoue, Y. Saga. Mouse Nkd2, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech. Dev., 121 (2004), 1443-1453. [CrossRef] [PubMed] [Google Scholar]
  22. P. B. Jensen, L. Pedersen, S. Krishna, M. H. Jensen. A Wnt oscillator model for somitogenesis. Biophys. J., 98 (2010), 943-950. [CrossRef] [PubMed] [Google Scholar]
  23. J. Lewis. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol., 13 (2003), 1398-1408. [CrossRef] [PubMed] [Google Scholar]
  24. I. Palmeirim, D. Henrique, D. Ish-Horowicz, O. Pourquié. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell, 91 (1997), 639-648. [CrossRef] [PubMed] [Google Scholar]
  25. P. C. G. Rida, N. Le Minh, Y. J. Jiang. A Notch feeling of somite segmentation and beyond. Dev. Biol., 265 (2004), 2-22. [CrossRef] [PubMed] [Google Scholar]
  26. J. G. Rodríguez-González, M. Santillán, A. C. Fowler, M. C. Mackey. The segmentation clock in mice: interaction between the Wnt and Notch signalling pathways. J. Theor. Biol., 248 (2007), 37-47. [CrossRef] [PubMed] [Google Scholar]
  27. Y. Saga, H. Takeda. The making of the somite: Molecular events in vertebrate segmentation. Nat. Rev. Gen., 2 (2001), 835-845. [CrossRef] [Google Scholar]
  28. M. Santillán, M. C. Mackey. A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis. PLoS ONE, 3 (2008), e1561. [CrossRef] [PubMed] [Google Scholar]
  29. M. B. Wahl, C. Deng, M. Lewandoski, O. Pourquié. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Dev., 134 (2007), 4033-4041. [CrossRef] [Google Scholar]
  30. Y. Yasuhiko, S. Haraguchi, S. Kitajima, Y. Takahashi, J. Kanno, Y. Saga. Tbx6-mediated notch signaling controls somite-specific mesp2 expression. Proc. Natl. Acad. Sci. USA, 103 (2006), 3651-6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.