Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 6, 2012
Biological oscillations
Page(s) 126 - 166
Published online 20 December 2012
  1. A.W. Murray, M.W. Kirschner. Cyclin synthesis drives the early embryonic cell cycle. Nature 339 (1989), 275–280. [CrossRef] [PubMed]
  2. A. Murray, T. Hunt. The Cell Cycle : An Introduction. W.H. Freeman and Company (1993), New York.
  3. M.A. Félix, J.C. Labbé, M. Dorée, T. Hunt, E. Karsenti. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature 346 (1990), 379–382. [CrossRef] [PubMed]
  4. J.J. Tyson. Modeling the cell division cycle : cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. USA 88 (1991), 7328–7332. [CrossRef]
  5. A. Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. USA 88 (1991), 9107–9111. [CrossRef]
  6. B. Novak, J.J. Tyson. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell. Sci. 106 (1993), 1153–1168. [PubMed]
  7. J.E. Jr Ferrell, E.M. Machleder. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280 (1998), 895–898. [CrossRef] [PubMed]
  8. J.R. Pomerening, E.D. Sontag, J.E. Jr Ferrell. Building a cell cycle oscillator : hysteresis and bistability in the activation of Cdc2. Nat. Cell. Biol. 5 (2003), 346–351. [CrossRef] [PubMed]
  9. W. Sha, J. Moore, K. Chen, A.D. Lassaleta, C.-S. Yi, J.J. Tyson, J.C. Sible. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl. Acad. Sci. USA 100 (2003), 975–980. [CrossRef]
  10. B. Novak, J.J. Tyson. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 94 (1997), 9147–9152. [CrossRef]
  11. K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R. Cross, B. Novak, J.J. Tyson. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell. 15 (2004), 3841–3862. [CrossRef] [PubMed]
  12. D. Barik, W.T. Baumann, M.R. Paul, B. Novak, J.J. Tyson. A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol. 6 (2010), 405. [CrossRef] [PubMed]
  13. D.O. Morgan. Principles of Cdk regulation. Nature 374 (1995), 131–134. [CrossRef] [PubMed]
  14. D.O. Morgan. The Cell Cycle : Principles of Control. Oxford Univ Press, UK, (2006).
  15. Z. Qu, J.N. Weiss, W.R. MacLellan. Regulation of the mammalian cell cycle : a model of the G1-to-S transition. Am. J. Physiol. Cell. Physiol. 284 (2003), 349–364. [CrossRef]
  16. M. Swat, A. Kel, H. Herzel. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20 (2004), 1506–1511. [CrossRef] [PubMed]
  17. B. Pfeuty, T. David-Pfeuty, K. Kaneko. Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 7 (2008), 3246–3257. [CrossRef] [PubMed]
  18. B. Novak, J.J. Tyson. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230 (2004), 563–579. [CrossRef] [PubMed]
  19. E. He, O. Kapuy, R.A. Oliveira, F. Uhlmann, J.J. Tyson, B. Novak. System-level feedbacks make the anaphase switch irreversible. Proc. Natl. Acad. Sci. USA 108 (2011), 10016–10021. [CrossRef]
  20. C. Gérard, A. Goldbeter. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Natl. Acad. Sci. USA 106 (2009), 21643–21648. [CrossRef]
  21. C. Gérard, A. Goldbeter. A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle. Interface Focus 1 (2011), 24–35. [CrossRef] [MathSciNet] [PubMed]
  22. C. Gérard, D. Gonze, A. Goldbeter. Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle. FEBS J. 279 (2012), 3411–3431. [CrossRef] [PubMed]
  23. A. Chauhan, S. Lorenzen, H. Herzel, S. Bernard. Regulation of mammalian cell cycle progression in the regenerating liver. J. Theor. Biol. 283 (2011), 103–112. [CrossRef] [PubMed]
  24. C. Gérard, A. Goldbeter. Entrainment of the mammalian cell cycle by the circadian clock : Modeling two coupled cellular rhythms. PLoS Comput. Biol. 8(5) : e1002516, (2012). [CrossRef] [PubMed]
  25. E. Filipski, V.M. King, X.M. Li, T.G. Granda, M.C. Mormont, X. Liu, B. Claustrat, M.H. Hastings, F. Lévi. Host circadian clock as a control point in tumor progression. J. Natl. Cancer Inst. 94 (2002), 690–697. [CrossRef] [PubMed]
  26. L. Fu, C.C. Lee. The circadian clock : pacemaker and tumour suppressor. Nature 3 (2003), 350–361.
  27. J.S. Pendergast, M. Yeom, B.A. Reyes, Y. Ohmiya, S. Yamazaki. Disconnected circadian and cell cycles in a tumor- driven cell line. Commun. Integr. Biol. 3 (2010), 536–539. [CrossRef] [PubMed]
  28. L.A. Segel. On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50 (1988), 579–593. [MathSciNet] [PubMed]
  29. J.A. Borghans, R.J. de Boer, L.A. Segel. Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58 (1996), 43–63. [CrossRef] [PubMed]
  30. A. Ciliberto, F. Capuani, J.J. Tyson. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3 :e45, (2007). [CrossRef] [PubMed]
  31. W. Zachariae, K. Nasmyth. Whose end is destruction : cell division and the anaphase-promoting complex. Genes Dev. 13 (1999), 2039–2058. [CrossRef] [PubMed]
  32. E.R. Kramer, N. Scheuringer, A.V. Podtelejnikov, M. Mann, J.M. Peters. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell. 11 (2000), 1555–1569. [CrossRef] [PubMed]
  33. I. Hoffmann, P.R. Clarke, M.J. Marcote, E. Karsenti, G. Draetta. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12 (1993), 53–63. [PubMed]
  34. M. Sabouri-Ghomi, A. Ciliberto, S. Kar, B. Novak, J.J. Tyson. Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250 (2008), 209–218. [CrossRef] [PubMed]
  35. A. Goldbeter, D.E. Jr Koshland. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78 (1981), 6840–6844. [CrossRef]
  36. H. Matsushime, D.E. Quelle, S.A. Shurtleff, M. Shibuya, C.J. Sherr, J.-Y. Kato. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell. Biol. 14 (1994), 2066–2076. [PubMed]
  37. A. Goldbeter, C. Gérard, J.-C. Leloup. Biologie des systèmes et rythmes cellulaires. Médecine/Sciences 26 (2010), 49–56. [CrossRef] [EDP Sciences] [PubMed]
  38. A. Goldbeter, C. Gérard, J.-C. Leloup, D. Gonze, G. Dupont. Systems biology of cellular rhythms. FEBS Lett. 586 (2012), 2955–2965. [CrossRef] [PubMed]
  39. C. Gérard, A. Goldbeter. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits. Chaos 20 (2010), 045109. [CrossRef] [PubMed]
  40. S. Mittnacht. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8 (1998), 21–27. [CrossRef] [PubMed]
  41. J.W. Harbour, D.C. Dean. The Rb/E2F pathway : expanding roles and emerging paradigms. Genes Dev. 14 (2000), 2393–2409. [CrossRef] [PubMed]
  42. J.-H. Dannenberg, A. van Rossum, L. Schuijff, H. te Riele. Ablation of the Retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14 (2000), 3051–3064. [CrossRef] [PubMed]
  43. J. Sage, G.J. Mulligan, L.D. Attardi, A. Miller, S. Chen, B. Williams, E. Theodorou, T. Jacks. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14 (2000), 3037–3050. [CrossRef] [PubMed]
  44. J.R. Pomerening, S.Y. Kim, J.E. Jr Ferrell. Systems-level dissection of the cell-cycle oscillator : bypassing positive feedback produces damped oscillations. Cell 122 (2005), 565–578. [CrossRef] [PubMed]
  45. D. Gonze, M. Hafner. Positive feedbacks contribute to the robustness of the cell cycle with respect to molecular noise. Adv. in theory of control, signals. LNCIS 407, (2010) pp. 283–295 (Lévine J & Müllhaupt, eds), Springer-Verlag Berlin Heidelberg, Germany.
  46. C. Gérard, A. Goldbeter. From quiescence to proliferation : Cdk oscillations drive the mammalian cell cycle. Front. Physiol. 3 (2012), 413. [PubMed]
  47. A. Altinok, D. Gonze, F. Lévi, A. Goldbeter. An automaton model for the cell cycle. Interface Focus 1 (2011), 36–47. [CrossRef] [PubMed]
  48. A. Altinok, F. Lévi, A. Goldbeter. A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59 (2007), 1036–1053. [CrossRef] [PubMed]
  49. A.T. Winfree. Discontinuities and singularities in the timing of nuclear division. In : Cell Cycle Clocks. L.N. Edmunds Jr, ed. Marcel Dekker, New York and Basel, (1984) pp. 63–80.
  50. L.N. Jr. Edmunds. Cellular and Molecular Bases of Biological Clocks. Models and Mechanisms for Circadian Time- keeping. Springer, New York (1988).
  51. A.T. Winfree. The Geometry of Biological Time. Springer, New York (Reprinted as Springer Study Edition, 1990, Springer, Berlin, 1980).
  52. J.-C. Leloup, A. Goldbeter. A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am. J. Physiol. Reg. Integr. Comp. Physiol. 280 (2001), R1206-R1212.
  53. D. Gonze, A. Goldbeter. A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. J Theor Biol 210 (2001), 167–186. (See erratum : J. Theor. Biol. 212 (2001), 565. [CrossRef] [PubMed]
  54. I. Conlon, M. Raff. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2 (2003), 7. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.