Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
|
|
---|---|---|
Page(s) | 170 - 174 | |
DOI | https://doi.org/10.1051/mmnp/20138112 | |
Published online | 28 January 2013 |
- H. Behncke. Absolute continuity of Hamiltonians with won Neumann Wigner potentials. Manuscripta Math. 71 (1991), 163–181. [CrossRef] [MathSciNet] [Google Scholar]
- D. J. Gilbert, D. B. Pearson. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128 (1987), no. 1, 30–56. [CrossRef] [Google Scholar]
- A. Kiselev, Y. Last, B. Simon. Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Comm. Math. Phys. 194 (1998), no. 1, 1–45. [CrossRef] [MathSciNet] [Google Scholar]
- H. Prüfer. Neue Herleitung der Sturm–Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), no. 1, 499–518. [CrossRef] [MathSciNet] [Google Scholar]
- M. Schmied, R. Sims, G. Teschl. On the absolutely continuous spectrum of Sturm–Liouville operators with applications to radial quantum trees. Oper. Matrices 2 (2008),417–434. [CrossRef] [MathSciNet] [Google Scholar]
- B. Simon, G. Stolz. Operators with singular continuous spectrum. V. Sparse potentials. Proc. Amer. Math. Soc. 124 (1996), no. 7, 2073–2080. [CrossRef] [MathSciNet] [Google Scholar]
- B. Simon. Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Amer. Math. Soc. 124 (1996), 3361–3369. [CrossRef] [MathSciNet] [Google Scholar]
- G. Stolz. Bounded solutions and absolute continuity of Sturm–Liouville operators. J . Math. Anal. Appl. 169 (1992), 210–228. [CrossRef] [MathSciNet] [Google Scholar]
- G. Stolz. Localization for random Schrödinger operators with Poisson potential. Ann. Inst. H. Poincaré Phys. Théor. 63 (1995), no. 3, 297–314. [MathSciNet] [Google Scholar]
- G. Teschl. Mathematical methods in quantum mechanics with applications to Schrödinger operators. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.