Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 175 - 192
Published online 28 January 2013
  1. A. Benedek, R. Panzone. The Space Lp, with Mixed Norm. Duke Math. J. 28 (1961), 301-324. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Bishop. Mixed modulation spaces and their application to pseudodifferential operators. J. Math. Anal. Appl. 363 (2010) 1, 255–264. [CrossRef] [Google Scholar]
  3. V. Catană, S. Molahajloo, M. W. Wong. Lp-Boundedness of Multilinear Pseudo-Differential Operators, in Pseudo-Differential Operators : Complex Analysis and Partial Differential Equations . Operator Theory : Advances and Applications. 205, Birkhäuser, 2010, 167–180. [Google Scholar]
  4. E. Cordero, F. Nicola. Metaplectic Representation on Wiener Amalgam Spaces and Applications to the Schrödinger Equation. J. Funct. Anal. 254 (2008), 506-534. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Cordero, F. Nicola. Pseudodifferential Operators on Lp, Wiener Amalgam and Modulation Spaces. Int. Math. Res. Notices 10 (2010), 1860-1893. [Google Scholar]
  6. F. Concetti, J. Toft. Trace Ideals for Fourier Integral Operators with Non-Smooth Symbols, in Pseudo-Differential Operators : Partial Differential Equations and Time Frequency Analysis. Fields Institute Communications, 52 (2007), 255–264. [Google Scholar]
  7. W. Czaja. Boundedness of Pseudodifferential Operators on Modulation Spaces. J. Math. Anal. Appl. 284(1) (2003), 389-396. [CrossRef] [Google Scholar]
  8. H. G. Feichtinger. Atomic Characterization of Modulation Spaces through the Gabor-Type Representations. Rocky Mountain J. Math. 19 (1989), 113-126. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. G. Feichtinger. On a New Segal Algebra. Monatsh. Math. 92 (1981), 269-289. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. G. Feichtinger, K. Gröchenig. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions I. J. Funct. Anal. 86 (1989), 307-340. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. G. Feichtinger, K. Gröchenig. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions II. Monatsh. Math. 108 (1989), 129-148. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. G. Feichtinger, K. Gröchenig. Gabor Wavelets and the Heisenberg Group : Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, in Wavelets : a tutorial in theory and applications. Academic Press, Boston, 1992. [Google Scholar]
  13. H. G. Feichtinger, K. Gröchenig. Gabor Frames and Time-Frequency Analysis of Distributions. J. Funct. Anal. 146 (1997), 464-495. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Gröchenig. Foundation of Time-Frequency Analysis. Brikhäuser, Boston, 2001. [Google Scholar]
  15. K. Gröchenig, C. Heil. Counterexamples for Boundedness of Pseudodifferential Operators. Osaka J. Math. 41 (3) (2004), 681-691. [MathSciNet] [Google Scholar]
  16. K. Gröchenig, C. Heil. Modulation Spaces and Pseudodifferential Operators. Integr. Equat. Oper. th. 34 (4) (1999), 439-457. [CrossRef] [Google Scholar]
  17. Y. M. Hong, G. E. Pfander. Irregular and multi-channel sampling of operators. Appl. Comput. Harmon. Anal. 29 (2) (2010), 214-231. [CrossRef] [Google Scholar]
  18. L. Hörmander. The Analysis of Linear Partial Differential Operators I. Second Edition, Springer-Verlag, Berlin, 1990. [Google Scholar]
  19. L. Hörmander. The Weyl Calculus of Pseudodifferential Operators. Comm. Pure Appl. Math. 32 (1979), 360-444. [MathSciNet] [Google Scholar]
  20. I. L. Hwang, R. B. Lee. Lp-Boundedness of Pseudo-Differential Operators of Class S0,0. Trans. Amer. Math. Soc. 346 (2) (1994), 489-510. [MathSciNet] [Google Scholar]
  21. H. Kumano-Go. Pseudo-Differential Operators. Translated by Hitoshi Kumano-Go, Rémi Vaillancourt and Michihiro Nagase, MIT Press, 1982. [Google Scholar]
  22. K. A. Okoudjou. A Beurling-Helson Type Theorem for Modulation Spaces. J. Func. Spaces Appl. 7 (1) (2009), 33-41. [CrossRef] [Google Scholar]
  23. G. E. Pfander, D. Walnut. Operator Identification and Feichtinger’s Algebra. Sampl. Theory Signal Image Process. 5 (2) (2006), 151-168. [Google Scholar]
  24. G. E. Pfander. Sampling of Operators. arxiv : 1010.6165. [Google Scholar]
  25. J. Sjöstrand. An Algebra of Pseudodifferential Operators. Math. Res. Lett. 1 (2) (1994), 185-192. [MathSciNet] [Google Scholar]
  26. J. Sjöstrand. Wiender Type Algebras of Pseudodifferential Operators, in Séminaire Équations aux dérivées Partielles. 1994-1995, exp. 4, 1–19. [Google Scholar]
  27. J. Toft. Continuity Properties for Modulation Spaces, with Applications to Pseudo-Differential Calculus I. J. Funct. Anal. 207 (2004), 399–429 [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Toft. Continuity Properties for Modulation Spaces, with Applications to Pseudo-Differential Calculus II. Ann. Glob. Anal. Geom. 26 (2004), 73–106. [CrossRef] [Google Scholar]
  29. J. Toft. Fourier Modulation Spaces and Positivity in Twisted Convolution Algebra. Integral Transforms and Special Functions, 17 nos. 2-3 (2006), 193–198. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Toft. Pseudo-Differential Operators with Smooth Symbols on Modulation Spaces. CUBO. 11 (2009), 87-107. [MathSciNet] [Google Scholar]
  31. J. Toft, S. Pilipovic, N. Teofanov. Micro-Local Analysis in Fourier Lebesgue and Modulation Spaces. Part II, J. Pseudo-Differ. Oper. Appl. 1 (2010), 341-376. [CrossRef] [Google Scholar]
  32. M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999. [Google Scholar]
  33. M. W. Wong. Fredholm Pseudo-Differential Operators on Weighted Sobolev Spaces. Ark. Mat. 21 (2) (1983), 271–282. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. W. Wong. Weyl Transforms. Springer-Verlag, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.