Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 1, 2013
Harmonic analysis
Page(s) 175 - 192
DOI https://doi.org/10.1051/mmnp/20138113
Published online 28 January 2013
  1. A. Benedek, R. Panzone. The Space Lp, with Mixed Norm. Duke Math. J. 28 (1961), 301-324. [CrossRef] [MathSciNet]
  2. S. Bishop. Mixed modulation spaces and their application to pseudodifferential operators. J. Math. Anal. Appl. 363 (2010) 1, 255–264. [CrossRef]
  3. V. Catană, S. Molahajloo, M. W. Wong. Lp-Boundedness of Multilinear Pseudo-Differential Operators, in Pseudo-Differential Operators : Complex Analysis and Partial Differential Equations . Operator Theory : Advances and Applications. 205, Birkhäuser, 2010, 167–180.
  4. E. Cordero, F. Nicola. Metaplectic Representation on Wiener Amalgam Spaces and Applications to the Schrödinger Equation. J. Funct. Anal. 254 (2008), 506-534. [CrossRef] [MathSciNet]
  5. E. Cordero, F. Nicola. Pseudodifferential Operators on Lp, Wiener Amalgam and Modulation Spaces. Int. Math. Res. Notices 10 (2010), 1860-1893.
  6. F. Concetti, J. Toft. Trace Ideals for Fourier Integral Operators with Non-Smooth Symbols, in Pseudo-Differential Operators : Partial Differential Equations and Time Frequency Analysis. Fields Institute Communications, 52 (2007), 255–264.
  7. W. Czaja. Boundedness of Pseudodifferential Operators on Modulation Spaces. J. Math. Anal. Appl. 284(1) (2003), 389-396. [CrossRef]
  8. H. G. Feichtinger. Atomic Characterization of Modulation Spaces through the Gabor-Type Representations. Rocky Mountain J. Math. 19 (1989), 113-126. [CrossRef] [MathSciNet]
  9. H. G. Feichtinger. On a New Segal Algebra. Monatsh. Math. 92 (1981), 269-289. [CrossRef] [MathSciNet]
  10. H. G. Feichtinger, K. Gröchenig. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions I. J. Funct. Anal. 86 (1989), 307-340. [CrossRef] [MathSciNet]
  11. H. G. Feichtinger, K. Gröchenig. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions II. Monatsh. Math. 108 (1989), 129-148. [CrossRef] [MathSciNet]
  12. H. G. Feichtinger, K. Gröchenig. Gabor Wavelets and the Heisenberg Group : Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, in Wavelets : a tutorial in theory and applications. Academic Press, Boston, 1992.
  13. H. G. Feichtinger, K. Gröchenig. Gabor Frames and Time-Frequency Analysis of Distributions. J. Funct. Anal. 146 (1997), 464-495. [CrossRef] [MathSciNet]
  14. K. Gröchenig. Foundation of Time-Frequency Analysis. Brikhäuser, Boston, 2001.
  15. K. Gröchenig, C. Heil. Counterexamples for Boundedness of Pseudodifferential Operators. Osaka J. Math. 41 (3) (2004), 681-691. [MathSciNet]
  16. K. Gröchenig, C. Heil. Modulation Spaces and Pseudodifferential Operators. Integr. Equat. Oper. th. 34 (4) (1999), 439-457. [CrossRef]
  17. Y. M. Hong, G. E. Pfander. Irregular and multi-channel sampling of operators. Appl. Comput. Harmon. Anal. 29 (2) (2010), 214-231. [CrossRef]
  18. L. Hörmander. The Analysis of Linear Partial Differential Operators I. Second Edition, Springer-Verlag, Berlin, 1990.
  19. L. Hörmander. The Weyl Calculus of Pseudodifferential Operators. Comm. Pure Appl. Math. 32 (1979), 360-444. [MathSciNet]
  20. I. L. Hwang, R. B. Lee. Lp-Boundedness of Pseudo-Differential Operators of Class S0,0. Trans. Amer. Math. Soc. 346 (2) (1994), 489-510. [MathSciNet]
  21. H. Kumano-Go. Pseudo-Differential Operators. Translated by Hitoshi Kumano-Go, Rémi Vaillancourt and Michihiro Nagase, MIT Press, 1982.
  22. K. A. Okoudjou. A Beurling-Helson Type Theorem for Modulation Spaces. J. Func. Spaces Appl. 7 (1) (2009), 33-41. [CrossRef]
  23. G. E. Pfander, D. Walnut. Operator Identification and Feichtinger’s Algebra. Sampl. Theory Signal Image Process. 5 (2) (2006), 151-168.
  24. G. E. Pfander. Sampling of Operators. arxiv : 1010.6165.
  25. J. Sjöstrand. An Algebra of Pseudodifferential Operators. Math. Res. Lett. 1 (2) (1994), 185-192. [MathSciNet]
  26. J. Sjöstrand. Wiender Type Algebras of Pseudodifferential Operators, in Séminaire Équations aux dérivées Partielles. 1994-1995, exp. 4, 1–19.
  27. J. Toft. Continuity Properties for Modulation Spaces, with Applications to Pseudo-Differential Calculus I. J. Funct. Anal. 207 (2004), 399–429 [CrossRef] [MathSciNet]
  28. J. Toft. Continuity Properties for Modulation Spaces, with Applications to Pseudo-Differential Calculus II. Ann. Glob. Anal. Geom. 26 (2004), 73–106. [CrossRef]
  29. J. Toft. Fourier Modulation Spaces and Positivity in Twisted Convolution Algebra. Integral Transforms and Special Functions, 17 nos. 2-3 (2006), 193–198. [CrossRef] [MathSciNet]
  30. J. Toft. Pseudo-Differential Operators with Smooth Symbols on Modulation Spaces. CUBO. 11 (2009), 87-107. [MathSciNet]
  31. J. Toft, S. Pilipovic, N. Teofanov. Micro-Local Analysis in Fourier Lebesgue and Modulation Spaces. Part II, J. Pseudo-Differ. Oper. Appl. 1 (2010), 341-376. [CrossRef]
  32. M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.
  33. M. W. Wong. Fredholm Pseudo-Differential Operators on Weighted Sobolev Spaces. Ark. Mat. 21 (2) (1983), 271–282. [CrossRef] [MathSciNet]
  34. M. W. Wong. Weyl Transforms. Springer-Verlag, 1998.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.