Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 4, 2013
Plant growth modelling
Page(s) 80 - 111
Published online 10 July 2013
  1. E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale. An extension theorem from connected sets, and homogenization in general periodic domains. Nonlin. Anal. Theory, Methods, Applic., 18 (1992), 481–496. [Google Scholar]
  2. G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23 (1992), 1482–1518. [Google Scholar]
  3. G. Allaire. Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal., 2 (1989), 203–222. [MathSciNet] [Google Scholar]
  4. T. Arbogast, H. Lehr. Homogenization of a Darcy-Stokes system modeling vuggy porous media. Computat. Geosci., 10 (2006), 291–302. [CrossRef] [Google Scholar]
  5. V. Calvez, J.G. Houot, N. Meunier, A. Raoult, G. Rusnakova. Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc., (2010), 1–18. [Google Scholar]
  6. A. Chavarría-Krauser, W. Jäger. Barodiffusion effects in bifurcating capillaries. Comput. Visual. Sci., 13 (2010), 121–128. [CrossRef] [Google Scholar]
  7. A. Chavarría-Krauser, M. Ptashnyk. Homogenization of long-range auxin transport in plant tissues. Nonlinear Anal. Real World Applic., 11 (2010), 4524–4532. [CrossRef] [Google Scholar]
  8. D. Cioranescu, J. Saint Jean Paulin. Homogenization of reticulated structures. Springer, New York, 1999. [Google Scholar]
  9. D. Cioranescu, P. Donato. An introduction to Homogenization. Oxfor University Press, New York, 1999. [Google Scholar]
  10. D. Cioranescu, P. Donato, R. Zaki. The periodic unfolding method in perforated domains. Port. Math., 63 (2006), 467–496. [Google Scholar]
  11. J. Claus, A. Chavarría-Krauser. Modeling Regulation of Zinc Uptake via ZIP Transporters in Yeast and Plant Roots. PLoS ONE, 7 (2012), e37193. [CrossRef] [PubMed] [Google Scholar]
  12. J. Claus, A. Bohmann, A.Chavarría-Krauser. Zinc Uptake and Radial Transport in Roots of Arabidopsis thaliana: A Modelling Approach to Understand Accumulation. Ann. Bot.-London, doi: 10.1093/aob/mcs263. [Google Scholar]
  13. J. Claus, A. Chavarría-Krauser. Implications of a zinc uptake and transport model. Plant Sig. Behav., 8 (2013), e24167. [CrossRef] [Google Scholar]
  14. K. Esau. Anatomy of seed plant. Wiley, 1977. [Google Scholar]
  15. J. Galvis, M. Sarkis. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Elect. Trans. Numer. Ana., 26 (2007), 350–384. [Google Scholar]
  16. V. Giovangigli. Multicomponent flow modeling. Birkhäuser, 1999. [Google Scholar]
  17. V. Girault, P.-A. Raviart. Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer, Berlin Heidelberg, 1986. [Google Scholar]
  18. T.H. van den Honert. Water transport in plants as a catenary process. Discuss. Faraday Soc., 3 (1948), 146–153. [Google Scholar]
  19. U. Hornung. Homogenization and porous media. Springer-Verlag, 1997. [Google Scholar]
  20. H. Javot, C. Maurel. The role of aquaporins in root water uptake. Ann. Bot.-London, 90 (2002), 301–313. [CrossRef] [Google Scholar]
  21. W. Jäger, A. Mikelic. On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl.Math., 60 (2000), 1111–1127. [Google Scholar]
  22. O.A. Ladyzenskaja, V.A Solonnikov, N.N. Uralceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, 1968. [Google Scholar]
  23. L.D. Landau, E.M. Lifschitz. Statistische Physik. Akademie Verlag, 1987. [Google Scholar]
  24. L.D. Landau, E.M. Lifschitz. Hydrodynamik. Akademie Verlag, 1991. [Google Scholar]
  25. W.J. Layton, F. Schieweck, I. Yotov. Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40 (2003), 2195–2218. [Google Scholar]
  26. R. Lipton, M. Avellaneda. Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc. Royal Soc. Edinburgh, 114A (1990), 71–79. [CrossRef] [Google Scholar]
  27. A. Marciniak-Czochra, M. Ptashnyk. Derivation of a macroscopic receptor-based model using homogenisation techniques. SIAM J. Math. Anal., 40 (2008), 215–237. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Neuss-Radu. Some extensions of two-scale convergence. C. R. Acad. Sci. Paris, 332 (1996), 899–904. [Google Scholar]
  29. G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20 (1989), 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  30. X.Y. Ni, T. Drengstig, P. Ruoff. The Control of the Controller: Molecular Mechanisms for Robust Perfect Adaptation and Temperature Compensation. Biophys. J., 97 (2009), 1244–1253. [CrossRef] [PubMed] [Google Scholar]
  31. P. Nobel. Physicochemical & Environmental Plant Physiology. Academic Press, 1999. [Google Scholar]
  32. M. Prosi, P. Zunino, K. Perktold, A. Quarteroni. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech., 38 (2005), 903–917. [CrossRef] [PubMed] [Google Scholar]
  33. M. Ptashnyk. Derivation of a macroscopic model for nutrient uptake by a single branch of hairy-roots. Nonlinear Anal. Real World Applic., 11 (2010), 4586–4596. [Google Scholar]
  34. A. Quarteroni, M. Discacciati. Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation. Rev. Mat. Comput., 22 (2009), 315–426. [Google Scholar]
  35. E. Steudle, C.A. Peterson. How does water get through roots? J. Exp. Bot., 49 (1998), 775–788. [Google Scholar]
  36. E. Steudle. Water uptake by plant roots: an integration of views. Plant Soil, 226 (2000), 45–56. [CrossRef] [Google Scholar]
  37. N. Sun, N.B. Wood, A.D. Hughes, S.A.M. Thom, X.Y. Xu. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am. J. Physiol. Heart. Circ. Physiol., 292 (2007), H3148–H3157. [CrossRef] [PubMed] [Google Scholar]
  38. L. Tartar. Incompressible fluid flow in a porous medium - convergence of the homogenization process. Appendix in Lecture Notes in Physics 127, Springer, Berlin, 1980. [Google Scholar]
  39. R. Temam. Navier-Stokes equations. North-Holland, Amsterdam, 1978. [Google Scholar]
  40. M. T. Tyree. The Thermodynamics of Short-distance Translocation in Plants. J. Exp. Bot., 20 (1969), 341–349. [CrossRef] [Google Scholar]
  41. M. T. Tyree. The Cohension-Tension theory of sap ascent: current controversies. J. Exp. Bot, 48 (1997), 1753–1765. [Google Scholar]
  42. A. Vailati, M. Giglio. Nonequilibrium fluctuations in time-dependent diffusion processes. Phys. Rev. E, 58 (1998), 4361–4371. [CrossRef] [Google Scholar]
  43. J. Vos, J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, P.H.B. de Visser. Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Botany, 61 (2010), 2101–2115. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.