Free Access
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 239 - 243
Published online 17 July 2014
  1. F. V. Atkinson. The normal solvability of linear equations in normed spaces (Russian). Mat. Sbornik N. S., 28 (1951), no. 70, 3–14. [MathSciNet] [Google Scholar]
  2. P. Boggiatto, E. Buzano, L. Rodino. Global Hypoellipticity and Spectral Theory. Akademie-Verlag, 1996. [Google Scholar]
  3. M. Cappiello, L. Rodino. SG-pseudo-differential operators and Gelfand–Shilov spaces. Rocky Mountain J. Math., 36 (2006), 1117-1148. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Coriasco, L. RodiCauchy problem for SG-hyperbolic equations with constant multipliers. no. Ricerche Mat. Suppl., XLVIII (1999), 25-43. [Google Scholar]
  5. A. Dasgupta, M. W. Wong. Spectral theory of SG pseudo-differential operators on Lp(ℝn). Studia Math., 187 (2008), 186–197. [CrossRef] [Google Scholar]
  6. Y. V. Egorov, B.-W. Schulze. Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, 1997. [Google Scholar]
  7. V. V. Grushin. Pseudodifferential operators on ℝn with bounded symbols. Funct. Anal. Appl., 4 (1970), 202–212. [CrossRef] [Google Scholar]
  8. L. Hörmander. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Reprint of the 1994 Edition, Classics in Mathematics, Springer-Verlag, 2007. [Google Scholar]
  9. S. Molahajloo. A characterization of compact pseudo-differential operators on S1. in Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advances and Applications, Birkhäuser, 213 (2011), 25–29. [Google Scholar]
  10. S. Molahajloo, M. W. Wong. Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on S1. J. Pseudo-Differ. Oper. Appl, 1 (2010), 183–205. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Nicola. K-theory of SG-pseudo-differential algebras. Proc. Amer. Math. Soc., 131 (2003), 2841-2848. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Schechter. On the essential spectrum of an arbitrary operator I. J. Math. Anal. Appl., 13 (1966), 205–215. [CrossRef] [Google Scholar]
  13. M. Schechter. Spectra of Partial Differential Operators. Second Edition, North-Holland, 1986. [Google Scholar]
  14. F. Wolf. On essential spectrum of partial differential boundary problems. Comm. Pure Appl. Math., 12 (1959), 211-228. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.