Free Access
Issue
Math. Model. Nat. Phenom.
Volume 9, Number 5, 2014
Spectral problems
Page(s) 44 - 72
DOI https://doi.org/10.1051/mmnp/20149504
Published online 17 July 2014
  1. M. Aizenman, S. Warzel. Localization bounds for multiparticle systems. Comm. Math. Phys., 290 (2009), 903-934. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Babbitt, L. Thomas. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. II. An explicit Plancherel formula. Comm. Math. Phys., 54 (1977), 255-278. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Babbitt, L. Thomas. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. III. Scattering theory. J. Math. Phys., 19 (1978), 1699-1704. [CrossRef] [Google Scholar]
  4. D. Babbitt, L. Thomas. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. IV. A completely integrable quantum system. J. Math. Anal. Appl., 72 (1979), 305-328. [CrossRef] [Google Scholar]
  5. D. Babbitt, E. Gutkin. The plancherel formula for the infinite XXZ Heisenberg spin chain. Lett. Math. Phys., 20 (1990), 91-99. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Bethe. Theorie der Metalle I: Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys., 71 (1931), 205-226. [Google Scholar]
  7. A. Borodin, I. Corwin, L. Petrov, T. Sasamoto. Spectral theory for the q-boson particle system. arXiv:1308.3475. [Google Scholar]
  8. R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Probability Theory and its Applications, Birkhäuser, Boston, 1990. [Google Scholar]
  9. V. Chulaevsky, Y. Suhov. Multi-particle Anderson localisation: induction on the number of particles. Math. Phys. Anal. Geom., 12 (2009), 117-139. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Fischbacher. On the spectrum of the XXZ spin chain, Master Thesis, Ludwig-Maximilians-Universität München, 2013. http://www.kent.ac.uk/smsas/maths/our-people/resources/thesis-cf299.pdf. [Google Scholar]
  11. E. Gutkin. Plancherel formula and critical spectral behaviour of the infinite XXZ chain. Quantum symmetries (Clausthal, 1991), 84-98, World Sci. Publ., River Edge, NJ, 1993. [Google Scholar]
  12. E. Gutkin. Heisenberg-Ising spin chain: Plancherel decomposition and Chebyshev polynomials. In Calogero-Moser-Sutherland Models (Montréal, QC, 1997), 177-192, CRM Ser. Math. Phys., Springer, New York, 2000. [Google Scholar]
  13. S. Haeseler, M. Keller. Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra. 181–199, Progr. Prob., 64, Birkhäuser, Basel, 2011. [Google Scholar]
  14. W. Hao, R. I. Nepomechie, A. J. Sommese. On the completeness of solutions of Bethe’s equations. Phys. Rev. E, 88 (2013), 052113. [CrossRef] [Google Scholar]
  15. T. Koma, B. Nachtergaele. The spectral gap of the ferromagnetic XXZ chain. Lett. Math. Phys., 40 (1997), 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Koma, B. Nachtergaele. The complete set of ground states of the ferromagnetic XXZ chains. Adv. Theor. Math. Phys., 2 (1998), 533–558. [MathSciNet] [Google Scholar]
  17. B. Nachtergaele, S. Starr. Droplet states in the XXZ Heisenberg chain. Comm. Math. Phys., 218 (2001), 569–607. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Nachtergaele, W. Spitzer, S. Starr. Droplet excitations for the spin-1/2 XXZ chain with kink boundary conditions. Ann. Henri Poincaré 8 (2007), 165–201. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Reed, B. Simon. Methods of modern mathematical physics, IV. Analysis of operators. Academic Press, New York, 1978. [Google Scholar]
  20. S. Starr. Some properties for the low-lying spectrum of the ferromagnetic, quantum XXZ spin system. PhD Thesis, UC Davis, 2001. [Google Scholar]
  21. G. Stolz. An introduction to the mathematics of Anderson localization. Entropy and the Quantum II (Tucson, AZ, 2010), 71-108, Contemp. Math., 552 Amer. Math. Soc., Providence, RI, 2011. [Google Scholar]
  22. L. Thomas. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. I, J. Math. Anal. Appl., 59 (1977), 392-414. [CrossRef] [Google Scholar]
  23. J. Weidmann. Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics. Volume 68, Springer, New York-Heidelberg-Berlin, 1980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.