Free Access
Math. Model. Nat. Phenom.
Volume 11, Number 4, 2016
Ecology, Epidemiology and Evolution
Page(s) 105 - 119
Published online 19 July 2016
  1. Y. Zhou, H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model., 38 (2003) 299–308. [CrossRef] [Google Scholar]
  2. A. Economoua, A. Gómez-Corral, M. López-García, A stochastic SIS epidemic model with heterogeneous contacts. Phys. A, 421 (2015) 78–97. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Gao, L. Chen, L. Sun, Dynamic complexities in a seasonal prevention epidemic model with birth pulses. Chaos Solitons & Fractals, 26 (2005) 1171–1181. [CrossRef] [MathSciNet] [Google Scholar]
  4. X Han, Q. Tan, Dynamical behavior of computer virus on internet. Appl. Math. Comput., 217 (2010) 2520–2526. [MathSciNet] [Google Scholar]
  5. B.K. Mishra, D.K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput., 188 (2007) 1476–1482. [MathSciNet] [Google Scholar]
  6. B.K. Mishra, N Jha, SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model., 34 (2010) 710–715. [CrossRef] [Google Scholar]
  7. L. Yang, X. Yang, The effect of infected external computers on the spread of viruses: a compartment modeling study. Phys. A, 392 (2013) 6523–6535. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Yang, X. Yang, A new epidemic model of computer viruses. Commun. Nonlinear Sci., 19 (2014) 1935–1944. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Ren, Y. Xu, J. Liu, Investigation of dynamics of a virus-antivirus model in complex network. Phys. A, 421 (2015) 533–540. [Google Scholar]
  10. T. Chen, N. Jamil, Effectiveness of Quarantine in Worm Epidemics. ICC 2006, 5 (2006) 2142–2147. [Google Scholar]
  11. V Yegneswaran, P Barford, D Plonka, On the design and use of internet sinks for network abuse monitoring. Lect. Notes Comput. Sc., 3224 (2004) 146–165. [CrossRef] [Google Scholar]
  12. O Depren, M Topallar, E Anarim, M.K. Ciliz, An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl., 29 (2005) 713–722. [CrossRef] [Google Scholar]
  13. P Sandhya, G Crina, T Johnson, Modeling intrusion detection system using hybrid intelligent systems. J. Netw. Comput. Appl., 30 (2007) 114–132. [Google Scholar]
  14. M.A. Aydin, A.H. Zaim, K.G. Ceylan, A hybrid intrusion detection system design for computer network security. Comput. Electr. Eng., 35 (2009) 517–526. [CrossRef] [Google Scholar]
  15. C. Zou, G. Gong, D Towsley, Worm propagation modeling and analysis under dynamic quarantine defense. WORM 2003, Washington, DC, USA, (2003) 51–60. [Google Scholar]
  16. O. Toutonji, S.M. Yoo, Passive Benign Worm Propagation Modeling with Dynamic Quarantine Defense. KSII T. Internet Inf. Syst., 3 (2009) 96–107. [Google Scholar]
  17. F. Wang, Y. Zhang, C. Wang, J. Ma, S.J. Moon, Stability analysis of a SEIQV epidemic model for rapid spreading worms. Comput. Secur., 29 (2010) 410–418. [CrossRef] [Google Scholar]
  18. Y Yao, L Guo, H Guo, G Yu, X. Gao, X. Tong, Pulse quarantine strategy of internet worm propagation: Modeling and analysis. Comput. Electr. Eng., 38 (2012) 1047–1061. [CrossRef] [Google Scholar]
  19. Y Yao, X. Feng, W Yang, W. Xiang, F. Gao, Analysis of a Delayed Internet Worm Propagation Model with Impulsive Quarantine Strategy. Math. Probl. Eng., Volume 2014, Article ID 369360, 18 pages. [Google Scholar]
  20. Y.B. Kafai, Understanding virtual epidemics: children's folk conceptions of a computer virus. J. Sci. Educ. Technol., 17 (2008) 523–529. [CrossRef] [Google Scholar]
  21. H. Song, Q. Wang, W. Jiang, Stability and Hopf Bifurcation of a Computer Virus Model with Infection Delay and Recovery Delay. J. Appl. Math., Volume 2014, Article ID 929580, 10 pages. [Google Scholar]
  22. J. Ren, Y. Xu, Stability and Bifurcation of a Computer Virus Propagation Model with Delay and Incomplete Antivirus Ability. Math. Probl. Eng., Volume 2014, Article ID 475934, 9 pages. [Google Scholar]
  23. T Dong, X. Liao, H. Li, Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus. Abstr. Appl. Anal., Volume 2012, Article ID 841987, 16 pages. [Google Scholar]
  24. W. Wang, S.K. Nguang, S. Zhong, F Liu, Novel delay-dependent stability criterion for time-varying delay systems with parameter uncertainties and nonlinear perturbations. Inform. Sciences, 281 (2014) 321–333. [CrossRef] [Google Scholar]
  25. Z. Zhang, H. Yang, Stability and Hopf Bifurcation for a Delayed SLBRS Computer Virus Model. The Scientific World J., Volume 2014, Article ID 373171, 6 pages. [Google Scholar]
  26. T. Kmet, M. Kmetova, Adaptive critic design and Hopfield neural network based simulation of time delayed photosynthetic production and prey-predator model. Inform. Sciences, 294 (2015) 586–599. [CrossRef] [Google Scholar]
  27. G. Wang, Q. Zhang, C. Yang, Stabilization of singular Markovian jump systems with time-varying switchings. Inform. Sciences, 297 (2015) 254–270. [CrossRef] [Google Scholar]
  28. M. Yang, Z. Zhang, Q. Li, G. Zhang, An SLBRS Model with Vertical Transmission of Computer Virus over the Internet. Discrete Dyn. Nat. Soc., Volume 2012, Article ID 925648, 17 pages. [Google Scholar]
  29. C. Gan, X. Yang, Theoretical and experimental analysis of the impacts of removable storage media and antivirus software on viral spread. Commun. Nonlinear Sci., 22 (2015) 167–174. [CrossRef] [Google Scholar]
  30. X. Li, J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos Solitons & Fractals, 26 (2005) 519–526. [Google Scholar]
  31. B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation. Cambridge Univ. Press. Cambridge, UK, 1981. [Google Scholar]
  32. J. Amador, The stochastic SIRA model for computer viruses. Appl. Math. Comput., 232 (2014) 1112–1124. [MathSciNet] [Google Scholar]
  33. S. Xua, W. Lubc, H. Lic, A Stochastic Model of Active Cyber Defense Dynamics. Internet Math., 11 (2015) 23–61. [CrossRef] [Google Scholar]
  34. C. Deng, Q. Liu, A computer virus spreading model with nonlinear infectivity on scale-free network. ICISMME 2015, (2015) 1684–1688. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.