Math. Model. Nat. Phenom.
Volume 15, 2020
Coronavirus: Scientific insights and societal aspects
Article Number 27
Number of page(s) 11
Published online 21 April 2020
  1. S. Bernard-Stoecklin, C. Campese, Y. Savitch et al., Influenza activity in France, season 2018–2019. BEH 28 (2019) 552–563. [Google Scholar]
  2. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk and V. Volpert, Modelling the dynamics of virus infection and immune response in space and time. Int. J. Parallel Emerg. Distrib. Syst. 34 (2019) 341–355. [CrossRef] [Google Scholar]
  3. L. Cai, N. Tuncer and M. Martcheva, How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria. Math. Methods Appl. Sci. 40 (2017) 6424–6450. [Google Scholar]
  4. A. Gandolfi, A. Pugliese and C. Sinisgalli, Epidemic dynamics and host immune response: a nested approach. J. Math. Biol. 70 (2015) 399–435. [CrossRef] [PubMed] [Google Scholar]
  5. Influenza season 2019–2020: early situation assessment. World Health Organization, (2019). [Google Scholar]
  6. M. Kochanczyk, F. Grabowski and T. Lipniacki, Impact of the contact and exclusion rates on the spread of COVID-19 pandemic. Preprint medRxiv (2020). [Google Scholar]
  7. A. Lachmann, Correcting under-reported COVID-19 case numbers. Preprint medRxiv (2020). [Google Scholar]
  8. G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, P. Pan, W. Wang, D. Hu, X. Liu, Q. Zhang and J. Wu, Coronavirus infections and immune responses. J. Med. Virol. 92 (2020) 424–432. [CrossRef] [PubMed] [Google Scholar]
  9. Z. Liu, P. Magal, O. Seydi and G. Webb, Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions. Biology 9 (2020) 50. [Google Scholar]
  10. S. Lukens, J. DePasse, R. Rosenfeld, E. Ghedin, E. Mochan, S.T. Brown, J. Grefenstette, D.S. Burke, D. Swigon and G. Clermont, A large-scale immuno-epidemiological simulation of influenza A epidemics. BMC Public Health 14 (2014) 1019. [Google Scholar]
  11. I. Marois, A. Cloutier, E. Garneau and M.V. Richter, Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract. J. Leukoc. Biol. 92 (2012) 107–121. [Google Scholar]
  12. J. Murray, Mathematical Biology, Vol. 1. Springer-Verlag, Heidelberg (2002). [Google Scholar]
  13. A.C. Paulo, M. Correia-Neves, T. Domingos, A.G. Murta and J. Pedrosa, Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic. PLoS ONE 5 (2010) e11655. [CrossRef] [PubMed] [Google Scholar]
  14. A. Pugliese and A. Gandolfi, A simple model of pathogen-immune dynamics including specific and non-specific immunity. Math. Biosci. 214 (2008) 73–80. [Google Scholar]
  15. Resultat de la surveillance de la grippe et du syndrome grippal en Belgique. [Google Scholar]
  16. Summary of UK surveillance of influenza and other seasonal respiratory illnesses. 29 August 2019 – Week 35 report (up to week 34 data). PHE National Influenza Report (2020). [Google Scholar]
  17. C.H. van Dorp, M. van Boven and R.J. de Boer, Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution. PLOS Comput. Biol. 10 (2014) e1003899. [Google Scholar]
  18. V. Volpert, M. Banerjee and S. Petrovskii, On a quarantine model of coronavirus infection and data analysis. MMNP 15 (2020) 24. [EDP Sciences] [Google Scholar]
  19. Worldometer, Available from: (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.