Issue
Math. Model. Nat. Phenom.
Volume 16, 2021
Coronavirus: Scientific insights and societal aspects
Article Number 33
Number of page(s) 22
DOI https://doi.org/10.1051/mmnp/2021026
Published online 04 June 2021
  1. https://cmmid.github.io/topics/covid19/. [Google Scholar]
  2. https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/covid-19-publications/6. [Google Scholar]
  3. https://covid-19.bsvgateway.org/. [Google Scholar]
  4. D. Adak, A. Majumder and N. Bairagi, Mathematical perspective of COVID-19 pandemic: disease extinction criteria in deterministic and stochastic models, MedRxiv Article (2020) available at https://www.medrxiv.org/content/10.1101/2020.10.12.20211201v1. [Google Scholar]
  5. D. Adjodah et al., Decrease in hospitalizations for COVID-19 after mask mandates in 1083 US counties. MedRxiv (2020). Available at https://www.medrxiv.org/content/10.1101/2020.10.21.20208728v1. [Google Scholar]
  6. M. Agrawal, M. Kanitkar and M. Vidyasagar, Modeling the spread of SARS-CoV-2 pandemic: impact of lockdowns and interventions. To appear Indian J. Med. Res. (2020). [Google Scholar]
  7. J.M. Cashore et al., COVID-19 mathematical modeling for Cornell’s fall semester, (2020) available at https://cpb-us-w2.wpmucdn.com/sites.coecis.cornell.edu/dist/3/341/files/2020/10/COVID_19_Modeling_Ju$N_1$5-VD6.pdf. [Google Scholar]
  8. M.L. Childs et al., The Impact of long term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control, MedRxiv Article (2020) available at https://www.medrxiv.org/content/10.1101/2020.05.03.20089078v1. [Google Scholar]
  9. V. Chin et al., A Case study in model failure – COVID-19 daily deaths and ICU bed utilization predictions in New York State, Arxiv Article 2006.15997 (2020). [Google Scholar]
  10. A. Das, A. Dhar, S. Goyal and A. Kundu, COVID-19 : analysis of an extended SEIR model and comparison of different interventions strategies, Arxiv Article 2005.11511 (2020). [Google Scholar]
  11. L. Dell’Anna, Solvable delay model for epidemic spreading : the case of COVID-19 in Italy, Arxiv Article 2003.13571 (2020). [Google Scholar]
  12. A. Dhar, A Critique of the COVID-19 analysis for India by Singh and Adhikari, ibid. 2004.05373 (2020). [Google Scholar]
  13. O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the Definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [Google Scholar]
  14. A.W.D. Edridge et al., Human coronavirus reinfection dynamics : lessons for SARS-CoV-2, ibid. (2020) available at https://www.medrxiv.org/content/10.1101/2020.05.11.20086439v2. [Google Scholar]
  15. G. Giordano et al., Modeling the COVID-19 epidemic and implementations of population-wide interventions in Italy. Nat. Med. 26 (2020) 855–860. [Google Scholar]
  16. Y. Gu, Estimating true infections : a simple heuristic to measure implied infection fatality rate, (2020) available at https://covid19-projections.com/estimating-true-infections/. [Google Scholar]
  17. W.O. Kermack and A.G. McKendrick, A Contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A 115 (1927) 700–721. [Google Scholar]
  18. R.J. Kosinski, The Influence of time-limited immunity on a COVID-19 epidemic: a simulation study. MedRxiv Article (2020) available at https://www.medrxiv.org/content/10.1101/2020.06.28.20142141v1. [Google Scholar]
  19. M. Kreck and E. Scholz, Studying the course of COVID-19 by a recursive delay approach, ibid. (2021) available at https://www.medrxiv.org/content/10.1101/2021.01.18.21250012v2. [Google Scholar]
  20. L.M. Kucirka, S.A. Lauer, O. Laeyendecker, D. Boon and J. Lessler, Variation in false-negative rate of RT-PCR tests for SARS-CoV02 by time since exposure, ibid. (2020) available at https://www.medrxiv.org/content/10.1101/2020.04.07.20051474v1. [Google Scholar]
  21. J. Lavine, O. Bjornstadt and R. Antia, Immunological characteristics will govern the changing severity of COVID-19 during the likely transition to endemicity, ibid. (2020) available at https://www.medrxiv.org/content/10.1101/2020.09.03.20187856v1. [Google Scholar]
  22. G. Menon, Problems with the Indian supermodel for COVID-19, available at https://www.thehindu.com/sci-tech/science/problems-with-the-indian-supermodel-for-covid-19/article32937184.ece. [Google Scholar]
  23. J. Mossong, N. Hens and M. Jit, Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS Medicine 5 (2008) e74. [CrossRef] [PubMed] [Google Scholar]
  24. F. Sandmann et al., The Potential health and economic value of SARS-CoV-2 vaccination alongside physical distancing in the UK : transmission model-based future scenario analysis and economic evaluation, ibid. (2020) available at https://www.medrxiv.org/content/10.1101/2020.09.24.20200857v1. [Google Scholar]
  25. S.R. Serrao et al., Requirements for the containment of COVID-19 disease outbreaks through periodic testing, isolation and quarantine, MedRxiv Article (2020) available at https://www.medrxiv.org/content/10.1101/2020.10.21.20217331v1. [Google Scholar]
  26. M.M. Sharma and B. Shayak, Public health implications of a delay differential equation model for COVID-19, Proceedings of KIML Workshop, KDD2020 (2020) available at https://aiisc.ai/KiML2020/papers/KiML2020_paper_77.pdf. [Google Scholar]
  27. B. Shayak, Differential Equations – Linear Theory and Applications, available electronically at www.shayak.in/Shayakpapers/DELTA/DELTA8.pdf. [Google Scholar]
  28. B. Shayak, M.M. Sharma and M. Gaur, A New delay differential equation for COVID-19, Proceedings of KIML Workshop, KDD2020 available at https://aiisc.ai/KiML2020/papers/KiML2020_paper_69.pdf. [Google Scholar]
  29. B. Shayak, M.M. Sharma, R.H. Rand, A. Singh and A. Misra, A Delay differential equation model for the spread of COVID-19 submitted, available at http://www.shayak.in/Shayakpapers/Diseases/Corona35.pdf. [Google Scholar]
  30. B. Shayak and R.H. Rand, Self-burnout – a new path to the end of COVID-19, MedRxiv Article (2020) available at https://www.medrxiv.org/content/10.1101/2020.04.17.20069443v2. [Google Scholar]
  31. R. Singh and R. Adhikari, Age-structured impact of social distancing on the COVID-19 epidemic in India, Arxiv Article 2003.12055 (2020). [Google Scholar]
  32. S. Thurner, P. Klimer and R. Hanel, A Network-based explanation of why most COVID-19 infection curves are linear. PNAS 117 (2020) 22684–22689. [CrossRef] [Google Scholar]
  33. C.P. Vyasarayani and A. Chatterjee, New approximations and policy implications from a delayed dynamic model of a fast pandemic. Physica D 414 (2020) 132701. [CrossRef] [PubMed] [Google Scholar]
  34. A. Wajnberg et al., SARS-CoV-2 infection induces robust neutralizing antibody responses that are stable for at least three months, ibid. (2020) available at https://www.medrxiv.org/content/10.1101/2020.07.14.20151126v1. [Google Scholar]
  35. L.S. Young, S. Ruschel, S. Yachuk and T. Pereira, Consequences of delays and imperfect implementation of isolation in epidemic control. Sci. Rep. 9 (2019) 3505. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.