Math. Model. Nat. Phenom.
Volume 17, 2022
Coronavirus: Scientific insights and societal aspects
Article Number 8
Number of page(s) 17
Published online 20 May 2022
  1. A. Alexanderian, P.A. Gremaud and R.C. Smith, Variance-based sensitivity analysis for time-dependent processes. Reliab. Eng. Syst. Saf. 196 (2020) 106722. [CrossRef] [Google Scholar]
  2. S.N. Arifin, G.R. Madey and F.H. Collins, Spatial agent-based simulation modeling in public health: design, implementation, and applications for malaria epidemiology. John Wiley & Sons (2016). [Google Scholar]
  3. D. Bigoni, Uncertainty Quantification with Applications to Engineering Problems Ph.D. thesis, Technical University of Denmark (2015). [Google Scholar]
  4. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains. Springer Science & Business Media (2007). [Google Scholar]
  5. V. Capasso and V. Capasso, vol. 88 of Mathematical structures of epidemic systems. Springer (1993). [CrossRef] [Google Scholar]
  6. W. Edeling, H. Arabnejad, R. Sinclair, D. Suleimenova, K. Gopalakrishnan, B. Bosak, D. Groen, I. Mahmood, D. Crommelin and P.V. Coveney, The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 1 (2021) 128–135. [CrossRef] [Google Scholar]
  7. B. Efron, The bootstrap and markov-chain monte carlo. J. Biopharmaceut. Stat. 21 (2011) 1052–1062. [CrossRef] [PubMed] [Google Scholar]
  8. P. Fine, K. Eames and D.L. Heymann, “Herd Immunity": A Rough Guide. Clin. Infect. Dis. 52 (2011) 911–916. [CrossRef] [PubMed] [Google Scholar]
  9. J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical learning. Springer series in statistics New York (2001), Vol. 1. [Google Scholar]
  10. R. Ghanem and P.D. Spanos, Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57 (1990) 197–202. [CrossRef] [Google Scholar]
  11. K. Græsbpll, L.E. Christiansen, U.H. Thygesen and C. Kirkeby, Delaying the peak of the COVID-19 epidemic with travel restrictions. Epidemiol. Methods 10 (2021) 20200042. [CrossRef] [Google Scholar]
  12. H.W. Hethcote, The Mathematics of Infectious Diseases. SIAM Rev. 42 (2000) 599–653. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. House, A. Ford, S. Lan, S. Bilson, E. Buckingham-Jeffery and M. Girolami, Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. J. Royal Soc. Interface 13 (2016) 20160279. [CrossRef] [PubMed] [Google Scholar]
  14. Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang, L. Yang et al., A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infectious Diseases 93 (2020) 211–216. [CrossRef] [Google Scholar]
  15. J.S. Liu and J.S. Liu, Vol. 10 of Monte Carlo strategies in scientific computing. Springer (2001). [Google Scholar]
  16. J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp and W.M. Getz, Superspreading and the effect of individual variation on disease emergence. Nature 438 (2005) 355–359. [CrossRef] [PubMed] [Google Scholar]
  17. T.E. Oliphant, vol. 1 of A guide to NumPy. Trelgol Publishing USA (2006). [Google Scholar]
  18. A. Olivares and E. Staffetti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy. Chaos Solitons Fractals 146 (2021) 110895. [CrossRef] [PubMed] [Google Scholar]
  19. K. Sneppen and L. Simonsen, Impact of superspreaders on dissemination and mitigation of COVID-19. Proc. of the National Academy of Sciences 11(2021) e2016623118. [CrossRef] [PubMed] [Google Scholar]
  20. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008) 964–979. [CrossRef] [Google Scholar]
  21. L. Taghizadeh, A. Karimi and C. Heitzinger, Uncertainty quantification in epidemiological models for the COVID-19 pandemic. Comput. Biol. Med. 125 (2020) 104011. [CrossRef] [Google Scholar]
  22. E. Unlu, H. Léger, O. Motornyi, A. Rukubayihunga, T. Ishacian and M. Chouiten, Epidemic analysis of COVID-19 outbreak and counter-measures in France. medRxiv (2020) [Google Scholar]
  23. D. Xiu, Numerical methods for stochastic computations: a spectral method approach. Princeton University Press (2010). [Google Scholar]
  24. D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.