Math. Model. Nat. Phenom.
Volume 17, 2022
Mathematical Models and Methods in Epidemiology
Article Number 7
Number of page(s) 24
Published online 29 March 2022
  1. S. Alizon, S. Haim-Boukobza, V. Foulongne, L. Verdurme, S. Trombert-Paolantoni, E. Lecorche, B. Roquebert and M.T. Sofonea, Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021. Eurosurveillance 26 (2021) 2100573. [CrossRef] [Google Scholar]
  2. S. Alizon and M.T. Sofonea, SARS-CoV-2 virulence evolution: Avirulence theory, immunity and trade-offs. Journal of Evolutionary Biology 34 (2021) 1867–1877. [CrossRef] [PubMed] [Google Scholar]
  3. R.M. Anderson and R.M. May, Infectious diseases of humans: dynamics and control. Oxford University Press (1992). [Google Scholar]
  4. V.C. Barclay, T. Smieszek, J. He, G. Cao, J.J. Rainey, H. Gao, A. Uzicanin and M. Salathé, Positive network assortativity of influenza vaccination at a high school: implications for outbreak risk and herd immunity. PLOS ONE 9 (2014) e87042. [CrossRef] [PubMed] [Google Scholar]
  5. T. Beneteau, B. Elie, M.T. Sofonea and S. Alizon, Estimating dates of origin and end of COVID-19 epidemics. Peer Community Journal 1 (2021) e70. [CrossRef] [Google Scholar]
  6. C. Bidot, M. Lamboni and H. Monod, multisensi: Multivariate Sensitivity Analysis (2018), R package version 2.1-1. [Google Scholar]
  7. G. Béraud, S. Kazmercziak, P. Beutels, D. Levy-Bruhl, X. Lenne, N. Mielcarek, Y. Yazdanpanah, P.-Y. Boëlle, N. Hens and B. Dervaux, The French connection: the first large population-based contact survey in France relevant for the spread of infectiousdiseases. PLOS ONE 10 (2015) e0133203. [CrossRef] [PubMed] [Google Scholar]
  8. F. Brauer, C. Castillo-Chavez and Z. Feng, vol. 32 of Mathematical models in epidemiology. Springer (2019). [CrossRef] [Google Scholar]
  9. R. Carnell, lhs: Latin Hypercube Samples (2020), R package version 1.1.1. [Google Scholar]
  10. R. Challen, E. Brooks-Pollock, J.M. Read, L. Dyson, K. Tsaneva-Atanasova and L. Danon, Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ 372 (2021) n579. [CrossRef] [PubMed] [Google Scholar]
  11. N.G. Davies, S. Abbott, R.C. Barnard, C.I. Jarvis, A.J. Kucharski, J.D. Munday, C.A.B. Pearson, T.W. Russell, D.C. Tully, A.D. Washburne, T. Wenseleers, A. Gimma, W. Waites, K.L.M. Wong, K. v. Zandvoort, J.D. Silverman, C.C. -. W. Group‡, C.-. G. U. C.-U. Consortium‡, K. Diaz-Ordaz, R. Keogh, R.M. Eggo, S. Funk, M. Jit, K.E. Atkins and W.J. Edmunds, Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372 (2021) eabg3055. [CrossRef] [PubMed] [Google Scholar]
  12. N.G. Davies, C.I. Jarvis, W.J. Edmunds, N.P. Jewell, K. Diaz-Ordaz and R.H. Keogh, Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593 (2021) 270–274. [CrossRef] [PubMed] [Google Scholar]
  13. N.G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit and R.M. Eggo, Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 26 (2020) 1205–1211. [CrossRef] [PubMed] [Google Scholar]
  14. O. Diekmann, J.A. Heesterbeek and J.A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28 (1990) 365–382. [MathSciNet] [Google Scholar]
  15. D. Eddelbuettel and R. François, Rcpp: Seamless R and C++ integration. J. Stat. Softw. 40 (2011) 1–18. [Google Scholar]
  16. M. Ehrhardt, J. Gašper and S. Kilianová, SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity. J. Comput. Sci. 37 (2019) 101027. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall and C. Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368 (2020) eabb6936. [CrossRef] [PubMed] [Google Scholar]
  18. T.J. Hagenaars, C.A. Donnelly and N.M. Ferguson, Spatial heterogeneity and the persistence of infectious diseases. J. Theor. Biol. 229 (2004) 349–359. [CrossRef] [Google Scholar]
  19. S. Haim-Boukobza, B. Roquebert, S. Trombert-Paolantoni, E. Lecorche, L. Verdurme, V. Foulongne, C. Selinger, Y. Michalakis, M.T. Sofonea and S. Alizon, Detecting rapid spread of sars-CoV-2 variants, Emerg. Infectious Dis. 27 (2021) eid2705.210397. [Google Scholar]
  20. J. Hellewell, S. Abbott, A. Gimma, N.I. Bosse, C.I. Jarvis, T.W. Russell, J.D. Munday, A.J. Kucharski, W.J. Edmunds, F. Sun, S. Flasche, B.J. Quilty, N. Davies, Y. Liu, S. Clifford, P. Klepac, M. Jit, C. Diamond, H. Gibbs, K. v. Zandvoort, S. Funk and R.M. Eggo, Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Global Health 8 (2020) e488–e496. [CrossRef] [Google Scholar]
  21. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42 (2000) 599–653. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Hoppenstaedt, Mathematical theories of populations: demographics, genetics and epidemics, SIAM (1975). [Google Scholar]
  23. N. Hozé, J. Paireau, N. Lapidus, C. Tran Kiem, H. Salje, G. Severi, M. Touvier, M. Zins, X. de Lamballerie, D. Lévy-Bruhl, F. Carrat and S. Cauchemez, Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling study. Lancet Public Health 6 (2021) e408–e415. [CrossRef] [PubMed] [Google Scholar]
  24. H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65 (2012) 309–348. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. H. Inaba, Age-structured population dynamics in demography and epidemiology. Springer (2017). [CrossRef] [Google Scholar]
  26. B. Iooss, S.D. Veiga, A. Janon, G. Pujol, with contributions from Baptiste Broto, K. Boumhaout, T. Delage, R.E. Amri, J. Fruth, L. Gilquin, J. Guillaume, M.I. Idrissi, L. Le Gratiet, P. Lemaitre, A. Marrel, A. Meynaoui, B.L. Nelson, F. Monari, R. Oomen, O. Rakovec, B. Ramos, O. Roustant, E. Song, J. Staum, R. Sueur, T. Touati and F. Weber, sensitivity: Global Sensitivity Analysis of Model Outputs (2021), R package version 1.25.0. [Google Scholar]
  27. M.J. Keeling, E.M. Hill, E.E. Gorsich, B. Penman, G. Guyver-Fletcher, A. Holmes, T. Leng, H. McKimm, M. Tamborrino, L. Dyson and M.J. Tildesley, Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLOS Comput. Biol. 17 (2021) e1008619. [CrossRef] [Google Scholar]
  28. M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008). [CrossRef] [Google Scholar]
  29. W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 115 (1927) 700–721. [CrossRef] [Google Scholar]
  30. C.T. Kiem, C.R. Massonnaud, D. Levy-Bruhl, C. Poletto, V. Colizza, P. Bosetti, A. Fontanet, A. Gabet, V. Olié, L. Zanetti, P.-Y. Boëlle, P. Crépey and S. Cauchemez, A modelling study investigating short and medium-term challenges for COVID-19 vaccination: From prioritisation to the relaxation of measures. EClinicalMedicine 38 (2021) 101001. [CrossRef] [PubMed] [Google Scholar]
  31. A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, F. Sun, M. Jit, J.D. Munday, N. Davies, A. Gimma, K. van Zandvoort, H. Gibbs, J. Hellewell, C.I. Jarvis, S. Clifford, B.J. Quilty, N.I. Bosse, S. Abbott, P. Klepac and S. Flasche, Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Diseases 20 (2020) 553–558. [CrossRef] [Google Scholar]
  32. N. Lefrancq, J. Paireau, N. Hozé, N. Courtejoie, Y. Yazdanpanah, L. Bouadma, P.-Y. Boëlle, F. Chereau, H. Salje and S. Cauchemez, Evolution of outcomes for patients hospitalised during the first 9 months of the SARS-CoV-2 pandemic in France: a retrospective national surveillance data analysis. Lancet Regl. Health 5 (2021) 100087. [Google Scholar]
  33. A.L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. Royal Soc. Lond. Ser B: Biol. Sci. 268 (2001) 985–993. [CrossRef] [PubMed] [Google Scholar]
  34. A.L. Lloyd and R.M. May, Spatial heterogeneity in epidemic models. J. Theor. Biol. 179 (1996) 1–11. [CrossRef] [Google Scholar]
  35. Y. Ma, S. Pei, J. Shaman, R. Dubrow and K. Chen, Role of meteorological factors in the transmission of SARS-CoV-2 in the United States. Nat. Commun. 12 (2021) 3602. [CrossRef] [Google Scholar]
  36. P. Magal, Compact attractors for time-periodic age-structured populationmodels (2001). [Google Scholar]
  37. A. Mazzoni, N.D. Lauria, L. Maggi, L. Salvati, A. Vanni, M. Capone, G. Lamacchia, E. Mantengoli, M. Spinicci, L. Zammarchi, S.T. Kiros, A. Rocca, F. Lagi, M.G. Colao, P. Parronchi, C. Scaletti, L. Turco, F. Liotta, G.M. Rossolini, L. Cosmi, A. Bartoloni and F. Annunziato, First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID-19. J. Clin. Invest. 131 (2021) e149150. [CrossRef] [Google Scholar]
  38. S. Moore, E.M. Hill, M.J. Tildesley, L. Dyson and M.J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect. Dis. 21 (2021) 793–802. [CrossRef] [Google Scholar]
  39. H. Nishiura, Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Math. Biosci. Eng. 7 (2010) 851–869. [CrossRef] [MathSciNet] [Google Scholar]
  40. A. Pazy, Vol. 44 of Semigroups of linear operators and applications to partial differential equations. Springer Science & Business Media (2012). [Google Scholar]
  41. Public Health England, COVID-19 vaccine surveillance report - week 23. Tech. rep. Public Health England (2021). [Google Scholar]
  42. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2021). [Google Scholar]
  43. Q. Richard, S. Alizon, M. Choisy, M.T. Sofonea and R. Djidjou-Demasse, Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic. PLOS Comput. Biol. 17 (2021) e1008776. [CrossRef] [Google Scholar]
  44. Q. Richard, M. Choisy, T. Lefèvre and R. Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity. Nonlinear Anal.: Real World Appl. 63 (2022) 103393. [CrossRef] [Google Scholar]
  45. RSTB, Philosophical Transactions of the Royal Society B (2021). [Google Scholar]
  46. H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. Andronico, N. Hozé, J. Richet, C.-L. Dubost, Y. Le Strat, J. Lessler, D. Levy-Bruhl, A. Fontanet, L. Opatowski, P.-Y. Boelle and S. Cauchemez, Estimating the burden of SARS-CoV-2 in France. Science 369 (2020) 208–211. [CrossRef] [PubMed] [Google Scholar]
  47. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola, Global sensitivity analysis: the primer. Wiley (2008). [Google Scholar]
  48. A. Sheikh, J. McMenamin, B. Taylor and C. Robertson, SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. The Lancet 397 (2021) 2461–2462. [CrossRef] [Google Scholar]
  49. M.T. Sofonea, B. Reyné, B. Elie, R. Djidjou-Demasse, C. Selinger, Y. Michalakis and S. Alizon, Memory is key in capturing COVID-19 epidemiological dynamics. Epidemics 35 (2021) 100459. [CrossRef] [PubMed] [Google Scholar]
  50. S.Y.D. Valle, J.M. Hyman and N. Chitnis, Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Math. Biosci. Eng. 10 (2013) 1475. [CrossRef] [MathSciNet] [Google Scholar]
  51. R. Verity, L.C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg, H. Thompson, P.G.T. Walker, H. Fu, A. Dighe, J.T. Griffin, M. Baguelin, S. Bhatia, A. Boonyasiri, A. Cori, Z. Cucunubá, R. FitzJohn, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, D. Laydon, G. Nedjati-Gilani, S. Riley, S. v. Elsland, E. Volz, H. Wang, Y. Wang, X. Xi, C.A. Donnelly, A.C. Ghani and N.M. Ferguson, Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 20 (2020) 669–677. [Google Scholar]
  52. A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli, T.J.R. Hughes, A. Patton, A. Reali, T.E. Yankeelov and A. Veneziani, Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion. Appl. Math. Lett. 111 (2021) 106617. [CrossRef] [Google Scholar]
  53. J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. Roy. Soc. B: Biol. Sci. 274 (2007) 599–604. [Google Scholar]
  54. J. Wallinga, P. Teunis and M. Kretzschmar, Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am. J. Epidemiol. 164 (2006) 936–944. [CrossRef] [PubMed] [Google Scholar]
  55. H. Wang, N. Yamamoto, H. Wang and N. Yamamoto, Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. Math. Biosci. Eng. 17 (2020) 4891–4904. [CrossRef] [MathSciNet] [Google Scholar]
  56. J.T. Wu, S. Mei, S. Luo, K. Leung, D. Liu, Q. Lv, J. Liu, Y. Li, K. Prem, M. Jit, J. Weng, T. Feng, X. Zheng and G.M. Leung, A global assessment of the impact of school closure in reducing COVID-19 spread. Philos. Trans. Royal Soc. A 380 (2022) 20210124. [CrossRef] [PubMed] [Google Scholar]
  57. R.M. Zellweger, T.A. Wartel, F. Marks, M. Song and J.H. Kim, Vaccination against SARS-CoV-2 and disease enhancement – knowns and unknowns. Exp. Rev. Vaccines 19 (2020) 691–698. [CrossRef] [PubMed] [Google Scholar]
  58. M. Zhang, J. Xiao, A. Deng, Y. Zhang, Y. Zhuang, T. Hu, J. Li, H. Tu, B. Li, Y. Zhou, J. Yuan, L. Luo, Z. Liang, Y. Huang, G. Ye, M. Cai, G. Li, B. Yang, B. Xu, X. Huang, Y. Cui, D. Ren, Y. Zhang, M. Kang and Y. Li, Transmission dynamics of an outbreak of the COVID-19 Delta Variant B.1.617.2 – Guangdong Province, China, May–June 2021. China CDC Weekly 3 (2021) 584–586. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.