Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 6
Number of page(s) 25
DOI https://doi.org/10.1051/mmnp/2022007
Published online 01 March 2022
  1. J.L. Aragón, R.A. Barrio, T.E. Woolley, R.E. Baker and P.K. Maini, Nonlinear effects on Turing patterns: time oscillations and chaos. Phys. Rev. E 86 (2012) 026201. [CrossRef] [PubMed] [Google Scholar]
  2. C. Arancibia-Ibarra, M. Bode, J. Flores, G. Pettet and P. van Heijster, Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator. Commun. Nonlinear Sci. Numer. Simul. 99 (2021) 105802. [CrossRef] [Google Scholar]
  3. E.A. Autry, A. Bayliss and V.A. Volpert, Biological control with nonlocal interactions. Math. Biosci. 301 (2018) 129–146. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Banerjee and S. Petrovskii, Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4 (2011) 37–53. [CrossRef] [Google Scholar]
  5. M. Banerjee and V. Volpert, Prey-predator model with a nonlocal consumption of prey. Chaos 26 (2016) 083120. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. M. Banerjee and V. Volpert, Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions. Ecol. Complex. 30 (2017) 2–10. [CrossRef] [Google Scholar]
  7. M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theor. Biol. 245 (2007) 220–229. [CrossRef] [Google Scholar]
  8. E. Ben-Jacob, I. Cohen and H. Levine, Cooperative self-organization of microorganisms. Adv. Phys. 49 (2000) 395–554. [CrossRef] [Google Scholar]
  9. R. Biggs, S.R. Carpenter and W.A. Brock, Turning back from the brink: detecting an impeding regime shift in time to avert it. Proc. Natl. Acad. Sci. USA 106 (2009) 826–831. [CrossRef] [PubMed] [Google Scholar]
  10. B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino and I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70 (2015) 1948–69. [CrossRef] [MathSciNet] [Google Scholar]
  11. N.F. Britton, Aggregation and the competitive exclusion principle. J. Theor. Biol. 136 (1989) 57–66. [CrossRef] [Google Scholar]
  12. R.S. Cantrell and C. Cosner, Models for predator-prey systems at multiple scales. SIAM Rev. 38 (1996) 256–286. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Chakraborty, The influence of generalist predators in spatially extended predator-prey systems. Ecol. Complex. 23 (2015) 50–60. [CrossRef] [Google Scholar]
  14. M.G. Clerc, D. Escaff and V.M. Kenkre, Analytical studies of fronts, colonies, and patterns: combination of the Allee effect and nonlocal competition interactions. Phys. Rev. E 82 (2010) 036210. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. A. Enkegaard, H.F. Brødsgaard and D.L. Hansen, Macrolophus caliginosus: Functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomolog. Exper. Appl. 101 (2001) 81–88. [CrossRef] [Google Scholar]
  16. A. Erbach, F. Lutscher and G. Seo, Bistability and limit cycles in generalist predator-prey dynamics. Ecol. Complex. 14 (2013) 48–55. [CrossRef] [Google Scholar]
  17. G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore, Maryland (1934). [Google Scholar]
  18. R. Han, B. Dai and Y. Chen, Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects. AIP Adv. 9 (2019) 035046. [CrossRef] [MathSciNet] [Google Scholar]
  19. C.B. Huffaker, Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27 (1958) 343–383. [CrossRef] [Google Scholar]
  20. B.J. Kealy and D.J. Wollkind, A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment. Bull. Math. Biol. 74 (2012) 803–833. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284 (1999) 1826–1828. [CrossRef] [PubMed] [Google Scholar]
  22. M. Kot, Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001). [CrossRef] [Google Scholar]
  23. N. Kumari, Pattern formation in spatially extended tritrophic food chain model systems: Generalist versus specialist top predators. ISRN Biomath. 2013 (2013) 198185. [CrossRef] [Google Scholar]
  24. S.A. Levin and L.A. Segel, Hypothesis for origin of planktonic patchiness. Nature 259 (1976) 659. [CrossRef] [PubMed] [Google Scholar]
  25. X. Li, G. Hu and Z. Feng, Pattern dynamics in a spatial predator-prey model with nonmonotonic response function. Int. J. Bifurc. Chaos 28 (2018) 1850077. [CrossRef] [Google Scholar]
  26. L.S. Luckinbill, Coexistence in laboratory populations of Paramecium aurelia and its predator Didinum nasutum. Ecology 54 (1973) 1320–1327. [CrossRef] [Google Scholar]
  27. L.S. Luckinbill, The effects of space and enrichment on a predator-prey system. Ecology 55 (1974) 1142–1147. [CrossRef] [Google Scholar]
  28. M. Ma, M. Gao and R. Carretero-González, Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis. J. Math. Anal. Appl. 475 (2019) 1883–1909. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Magal, C. Cosner and S. Ruan, Control of invasive hosts by generalist parasitoids. Math. Med. Biol. 25 (2008) 1–20. [CrossRef] [PubMed] [Google Scholar]
  30. K. Manna and M. Banerjee, Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth. Ecol. Complex. 36 (2018) 206–217. [CrossRef] [Google Scholar]
  31. K. Manna, S. Pal and M. Banerjee, Analytical and numerical detection of traveling wave and wave-train solutions in a prey-predator model with weak Allee effect. Nonlinear Dyn. 100 (2020) 2989–3006. [CrossRef] [Google Scholar]
  32. K. Manna, V. Volpert and M. Banerjee, Dynamics of a diffusive two-prey-one-predator model with nonlocal intra-specific competition for both the prey species. Mathematics 8 (2020) 101. [CrossRef] [Google Scholar]
  33. K. Manna, V. Volpert and M. Banerjee, Pattern formation in a three-species cyclic competition model. Bull. Math. Biol. 83 (2021) 52. [CrossRef] [PubMed] [Google Scholar]
  34. A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44 (2002) 311–370. [CrossRef] [MathSciNet] [Google Scholar]
  35. S.M. Merchant and W. Nagata, Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor. Popul. Biol. 80 (2011) 289–297. [CrossRef] [Google Scholar]
  36. A. Morozov, S. Petrovskii and B.-L. Li, Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J. Theor. Biol. 238 (2006) 18–35. [CrossRef] [Google Scholar]
  37. W.W. Murdoch, Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39 (1969) 335–354. [CrossRef] [Google Scholar]
  38. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin, Germany (2003). [CrossRef] [Google Scholar]
  39. F.L. Ochoa and J.D. Murray, A non-linear analysis for spatial structure in a reaction-diffusion model. Bull. Math. Biol. 45 (1983) 917–930. [CrossRef] [MathSciNet] [Google Scholar]
  40. S. Pal, M. Banerjee and S. Ghorai, Effects of boundary conditions on pattern formation in a nonlocal prey-predator model. Appl. Math. Model. 79 (2020) 809–823. [CrossRef] [MathSciNet] [Google Scholar]
  41. S. Pal, S. Ghorai and M. Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model. Math. Biosci. 310 (2019) 96–107. [CrossRef] [MathSciNet] [Google Scholar]
  42. S.V. Petrovskii, A.Y. Morozov and E. Venturino, Allee effect makes possible patchy invasion in a predator-prey system. Ecol. Lett. 5 (2002) 345–352. [CrossRef] [Google Scholar]
  43. F. Rao and Y. Kang, The complex dynamics of a diffusive prey-predator model with an Allee effect in prey. Ecol. Complex. 28 (2016) 123–44. [CrossRef] [Google Scholar]
  44. M. Rietkerk, S.C. Dekker, P.C. de Ruiter and J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems. Science 305 (2004) 1926–1929. [CrossRef] [PubMed] [Google Scholar]
  45. V.W. Rodrigues, D.C. Mistro and L.A.D. Rodrigues, Pattern formation and bistability in a generalist predator-prey model. Mathematics 8 (2020) 20. [Google Scholar]
  46. M. Scheffer, S. Carpenter, J.A. Foley and B. Walker, Catastrophic shifts in ecosystems. Nature 413 (2001) 591–596. [CrossRef] [PubMed] [Google Scholar]
  47. B.L. Segal, V.A. Volpert and A. Bayliss, Pattern formation in a model of competing populations with nonlocal interactions. Physica D 253 (2013) 12–22. [CrossRef] [MathSciNet] [Google Scholar]
  48. L.A. Segel and J.L. Jackson, Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37 (1972) 545–559. [CrossRef] [Google Scholar]
  49. N. Shigesada and K. Kawasaki, Biological invasions: theory and practice. Oxford University Press, Oxford (1997). [Google Scholar]
  50. P.D. Spencer and J.S. Collie, A simple predator-prey model of exploited marine fish populations incorporating alternative prey. ICES J. Mar. Sci. 53 (1995) 615–628. [Google Scholar]
  51. Y. Tanaka, H. Yamaoto and H. Ninomiya, Mathematical approach to nonlocal interactions using a reaction-diffusion system. Dev. Growth Differ. 59 (2017) 388–95. [CrossRef] [PubMed] [Google Scholar]
  52. A. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237 (1952) 37–72. [CrossRef] [Google Scholar]
  53. V.K. Vanag and I.R. Epstein, Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system. Phys. Rev. E 71 (2005) 066212. [CrossRef] [PubMed] [Google Scholar]
  54. M. van Baalen, V. Křivan, P.C.J. van Rijn and M.W. Sabelis, Alternative food, switching predators, and the persistence of predator-prey systems. Am. Natural. 157 (2001) 512–524. [CrossRef] [PubMed] [Google Scholar]
  55. E. van Leeuwen, V.A.A. Jansen and P.W. Bright, How population dynamics shape the functional response in a one-predator-two-prey system. Ecology 88 (2007) 1571–81. [CrossRef] [PubMed] [Google Scholar]
  56. J.C. van Lenteren, L. Hemerik, J.C. Lins Jr. and V.H.P. Bueno, Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato. Insects 7 (2016) 34. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.