Open Access
Issue
Math. Model. Nat. Phenom.
Volume 17, 2022
Article Number 5
Number of page(s) 39
DOI https://doi.org/10.1051/mmnp/2022004
Published online 24 February 2022
  1. D. Abraham and O. Distler, How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res Ther. 9 (2007) S2. [CrossRef] [Google Scholar]
  2. L. Ai and K. Vafai, A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transfer 49 (2006) 1568–1591. [CrossRef] [Google Scholar]
  3. M. Atif Khan Bulelzai, Mathematical Models for Atherosclerotic Plaque Evolution. Ph.D. thesis, University of Singh (2013). [Google Scholar]
  4. E. August, K.H. Parker and M. Barahona, A dynamical model of lipoprotein metabolism. Bull. Math. Biol. 69 (2007) 1233–1254. [CrossRef] [PubMed] [Google Scholar]
  5. B. Bartlett, H.P. Ludewick, A. Misra, S. Lee and G. Dwivedi, Macrophages and T cells in atherosclerosis: a translational perspective. Am. J. Physiol. Heart Circ. Physiol. 317 (2019) H375–H386. [CrossRef] [PubMed] [Google Scholar]
  6. A.M.W. Bartosch, R. Mathews and J.M. Tarbell, Biophys. J. 113 (2017) 101–108. [CrossRef] [Google Scholar]
  7. D. Bayik, D. Tross, L.A. Haile, D. Verthelyi and D.M. Klinman, Regulation of the maturation of human monocytes into immunosuppressive macrophages. Blood Adv. 1 (2017) 2510–2519. [CrossRef] [PubMed] [Google Scholar]
  8. V. Bezyaev, N. Sadekov and V. Volpert, A model of chronic inflammation in atherosclerosis. Math. Model. Biomed. 31 (2020) 04002. [Google Scholar]
  9. Y. Bi, J. Chen, F. Hu, J. Liu, M. Li and L. Zhao, M2 macrophages as a potential target for antiatherosclerosis treatment. Neural. Plast. 2019 (2019) 6724903. [Google Scholar]
  10. M.L. Brophy, Y. Dong, H. Wu, H.N.A. Rahman, K. Song and H. Chen, Eating the dead to keep atherosclerosis at bay. Front. Cardiovasc. Med. (2017). [Google Scholar]
  11. P.D. Cabral, N.J. Hong and J.L. Garvin, Shear stress increases nitric oxide production in thick ascending limbs. Am. J. Physiol. Renal Physiol. 299 (2010) F1185–F1192. [CrossRef] [PubMed] [Google Scholar]
  12. C.V. Carman and R. Martinelli, T lymphocyte–endothelial interactions: emerging understanding of trafficking and antigen-specific immunity. Front Immunol. 6 (2015). [CrossRef] [Google Scholar]
  13. D.S. Celermajer, C.K. Chow, E. Marijon, N.M. Anstey and K.S. Woo, Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J. Am. Coll. Cardiol. 60 (2012) 1207–1216. [CrossRef] [Google Scholar]
  14. C.A. Cobbold, J.A. Sherratt and S.R.J. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64 (2002) 65–95. [CrossRef] [Google Scholar]
  15. N.C. Di Paolo and D.M. Shayakhmetov, Interleukin 1α and the inflammatory process. Nat. Immunol. 17 (2016) 906–913. [CrossRef] [PubMed] [Google Scholar]
  16. G.A. Duque and A. Descoteaux, Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5 (2014). [Google Scholar]
  17. N. El Khatib, S. Génieys, B. Kazmierczak and V. Volpert, Reaction–diffusion model of atherosclerosis development. J. Math. Biol. 65 (2012) 349–374. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. N. El Khatib, S. Génieys and V. Volpert, Atherosclerosis initiation modeled as an inflammatory process. Math. Model. Nat. Phenom. 2 (2007) 126–141. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  19. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski and V. Volpert, Mathematical modelling of atherosclerosis. Math. Model. Nat. Phenom. 14 (2019) 603. [CrossRef] [EDP Sciences] [Google Scholar]
  20. A.R. Fatkhullina, I.O. Peshkova and E.K. Koltsova, The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc). 81 (2016) 1358–1370. [CrossRef] [PubMed] [Google Scholar]
  21. S. Freigang, F. Ampenberger, A. Weiss, T.D. Kanneganti, Y. Iwakura, M. Hersberger and M. Kopf, Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL − 1α and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14 (2013) 1045–1053. [CrossRef] [PubMed] [Google Scholar]
  22. T. Gerhardt and K. Ley, Monocyte trafficking across the vessel wall. Cardiovasc. Res. 107 (2015) 321–330. [CrossRef] [PubMed] [Google Scholar]
  23. M. Ghim, Y. Mohamied and P.D. Weinberg, The role of tricellular junctions in the transport of macromolecules across endothelium. Cardiovasc. Eng. Tech. 12 (2021) 101–113. [CrossRef] [PubMed] [Google Scholar]
  24. D.M. Greif, M. Kumar, J.K. Lighthouse, J. Hum, A. An, L. Ding, K. Red-Horse, F. Hernan Espinoza, L. Olson, S. Offermanns and M.A. Krasnow, Radial construction of an arterial wall. Dev. Cell. 23 (2012) 482–493. [CrossRef] [Google Scholar]
  25. H.A.R. Hadi, C.S. Carr and J. Al Suwaidi, Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascu. Health Risk Manag. 1 (2005) 183–198. [Google Scholar]
  26. W. Hao and A. Friedman, The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. Plos One 9 (2014). [Google Scholar]
  27. B.J. Hunt and K.M. Jurd, Endothelial cell activation. BMJ 316 (1998) 1328–1329. [CrossRef] [PubMed] [Google Scholar]
  28. A. Ibragimov, C. McNeal, L. Ritter and J. Walton, A mathematical model of atherogenesis as an inflammatory response. Math. Med. Biol. 22 (2015) 305–333. [Google Scholar]
  29. F. Ito and T. Ito, High-density lipoprotein (HDL) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants (Basel) 9 (2020) 362. [CrossRef] [Google Scholar]
  30. S. Kawashima and M. Yokoyama, Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscl. Thromb. Vasc. Biol. 24 (2004) 998–1005. [CrossRef] [PubMed] [Google Scholar]
  31. U. Laufs, V. La Fata, J. Plutzky and J.K. Liao, Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97 (1998) 1129–1135. [CrossRef] [PubMed] [Google Scholar]
  32. W. Lee and W.C. Liles, Endothelial activation, dysfunction and permeability during severe infections. Curr. Opin. Hematol. 18 (2011) 191–196. [CrossRef] [PubMed] [Google Scholar]
  33. E. Leiva, S. Wehinger, L. Guzmán and R. Orrego, Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. DOI: 10.5772/59375 (2015). [Google Scholar]
  34. B.D. Li and J.L. Mehta, Oxidized LDL, a critical factor in atherogenesis. Cardiovasc. Res. 68 (2005) 353–354. [CrossRef] [Google Scholar]
  35. J.K. Liao, Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123 (2013) 540–541. [CrossRef] [PubMed] [Google Scholar]
  36. P. Libby, The molecular mechanisms of the thrombotic complications of atherosclerosis. J. Int. Med. 263 (2008) 517–527. [CrossRef] [PubMed] [Google Scholar]
  37. P. Libby, Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 70 (2017) 2278–2289. [CrossRef] [Google Scholar]
  38. P. Libby, K. Bornfeldt and A.R. Tall, Atherosclerosis: successes, surprises, and future challenges. Circ Res. 118 (2016) 531–534. [CrossRef] [PubMed] [Google Scholar]
  39. P. Libby, J.E. Buring, L. Badimon, G.K. Hansson, J. Deanfield, M. Sommer Bittencourt, L. Tokgözoglu and E.F. Lewis, Atherosclerosis. Nat. Rev. Disease Primers 5 (2019). [Google Scholar]
  40. A.K. Lund, Oxidants and endothelial dysfunction. Compreh. Toxicol. 13 (2018) 252–281. [CrossRef] [Google Scholar]
  41. P. Macke Consigny, Pathogenesis of atherosclerosis. AJR 164 (1995) 553–558. [CrossRef] [PubMed] [Google Scholar]
  42. C. McKay, S. McKee, N. Mottram, T. Mulholland and S. Wilson, Towards a Model of Atherosclerosis. Strathclyde Mathematics Research Report (2005). [Google Scholar]
  43. D. Mozaffarian, E.J. Benjamin, A.S. Go, et al., Heart disease and strokestatistics 2016 update: a report from the American Heart Association. Circulation 133 (2016). [Google Scholar]
  44. H.N. Mozar, D.G. Bal and S.A. Farag, The natural history of atherosclerosis: an ecologic perspective. Atherosclerosis 82 (1990) 157–164. [CrossRef] [PubMed] [Google Scholar]
  45. M. Mudau, A. Genis, A. Lochner and H. Strijdom, Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Afr. 23 (2012) 222–231. [CrossRef] [Google Scholar]
  46. S. Mundi, M. Massaro, E. Scoditti, M.A. Carluccio, V.W.M. Van Hinsbergh, M.L. Iruela-Arispe and R. De Caterina, Endothelial permeability, LDL deposition, and cardiovascular risk factors–a review. ESC Cardiovasc. Res. 114 (2018) 35–52. [CrossRef] [PubMed] [Google Scholar]
  47. M.T. Nguyen, S. Fernando, N. Schwarz, J. TM Tan, C.A. Bursill and P.J. Psaltis, Inflammation as a therapeutic target in atherosclerosis. J. Clin. Med. 8 (2019) 1109. [CrossRef] [Google Scholar]
  48. A. Ougrinovskaia, R. Thompson and M. Myerscough, An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull. Math. Biol. 72 (2010) 1534–1561. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  49. A.V. Panfilov, H. Dierckx and V. Volpert, (INVITED) Reaction-diffusion waves in cardiovascular diseases. Physica D 399 (2019) 1–34. [CrossRef] [MathSciNet] [Google Scholar]
  50. R. Ross, Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340 (1999) 115–126. [CrossRef] [PubMed] [Google Scholar]
  51. T. Silva, W. Jäger, M. Neuss-Raduc and A. Sequeira, Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J. Theor. Biol. 496 (2020). [Google Scholar]
  52. I. Tabas and A.H. Lichtman, Monocyte-macrophages and T cells in atherosclerosis. Immunity 47 (2017) 621–634. [CrossRef] [PubMed] [Google Scholar]
  53. S.S. Thosar, B.D. Johnson, J.D. Johnston and J.P. Wallace, Sitting and endothelial dysfunction: the role of shear stress. Med. Sci. Monit. 18 (2012) 173–180. [Google Scholar]
  54. D. Tousoulis, A.M. Kampoli, C. Tentolouris, N. Papageorgiou and C. Stefanadis, The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 10 (2012) 4–18. [CrossRef] [Google Scholar]
  55. A. Tran-Dinh, D. Diallo, S. Delbosc, L.M. Varela-Perez, Q.B. Dang, B. Lapergue, E. Burillo, J.B. Michel, A. Levoye, J.L. Martin-Ventura and O. Meilhac, HDL and endothelial protection. Br. J. Pharmacol. 169 (2013) 493–511. [CrossRef] [Google Scholar]
  56. V. Volpert, Elliptic Partial Differential Equations. Volume 2: Reaction-Diffusion equations. Birkhauser (2014). [Google Scholar]
  57. I. Wendelhag, O. Wiklund and J. Wikstrand, On quantifying plaque size and Intima-Media thickness in carotid and femoral arteries. Arterioscler. Thromb. Vasc. Biol. 16 (1996) 843–850. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.